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TQble 3 Programmer productivily

Source lines per

. Unit deign. pro.rinuming
A debugging, and Icsting 65

All profossional 47
.With librarian support - - 43
Entire Ieam 35

professi'al I; 'ork, which includes system denign and dotcumen
tation. But n!Ut ibrarit support. The ihird row includes all pro-

graminig and librarian support. The last ruw presents the prod-
uctivity-.of the entire team on the completed systcn (excluding
requirenents analysis).

Team amxporiene and conclusions

The chief programmer teiiam approach- appears to be desirable
for the type of project discussed in this :aper because program-
mer efficiency was substanially improved. The quality of the
programming was demonstrted by nearly error-free acceptance
testing with real data, by successful operation after delivery, and
by its acceptance by system users.

The inf r u;tion baul. sys.;n was specvied, ,dva:doped. and

tested during a 132 man-Ionth pcoject. Thre tecam, in this ex-
periment, was a ,:ei ive!y experin:ced o-:, and it erfor ed
at an above-average level. Comparing results of this experi-
ment with results for comp;rable projects that were organized
more conventionally, we believe that chiel programmer teams
applying the methods described in this paper shnoul proba-
bly be able to doblbe normal productivity. in addition, the
quality of the completed programs sho! e superior: to cor-
ventionally produced progams in terms of lower !:vels of
errors remaining, scif-documentation, and ease of mainte-
nance.

Another valuable experience of the chief pro ramme.r zeam ap-
proach wafs its manageabaity. The team had a lower than usual
ratio of professional-t-support personc:. Bcause: the number
of peopi actilualy rloing rofesional work as; srialil, communli-

cations problems were ,ignilceantly reduccd. The chief program-

mer was more knowedable abot e progress of the work
than programming managers generally are because of his direct
involvement in it and because the techniqI'es used (particularly
the Progranming Prd,!ction Library, top-down programming,
and stnctured programming) made the sitatus of the work highly
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visible and inmdters.andablde. T"his knovwledec allowed both him
and his management to react to probiems sooner and Imore efiec-
tively Ih;ra might have been the case had they been more de-
t;cihed from the work.

The relat!ve!' srnal! size of the team ma it highly responsive
to chang-. The original funrctional speciiP:c ion wsnt lhough six
revi.sions.-yet fT w:ys po;sibic to adap! rei;ily to maijor changes,
even itho.e occurring alftr programm., w- well along. Im--

tion of Wtop'O nwn promgraouing, structured progralining, and the

P't all co , ' iuted to tlm i' i " "ili "

A function organizajiin as applied boh wi.ithi Ithe team and
to the proj:ct organization -s a whole. Wihi n the team, the

functional di,stribution of work allowed team m enbers to con-
centrate on those aspects of the job for which they were best
eqipped and most productive. At the' project level, the func.-
tional organi zation allowed the chief pro.uammer to concentate
on techninc! plogress of the proramrr .Bot; iniernall, and in
his'relations wit e the sysidm users. A vey efcive rel ionship

was esa blised between.the chief pro:nammier and tle project
maniager, ac' no problems aose from toi dual iaterie wi h the

users-who fully understood the responsiiiTieis of each of the
managers. During a period when the. chief programmer was off

of the pr 'ject, 1ho backup prot ammer succsst ly r.i ii-c pro-
ct.

The :u'c.ioa olit ei iatc-' effcrli veiy boi.;- thc tah e rfl c
career onpormities in the programmi, fietd by, ali-wi_ senior
progammers to cominbuc to hbe pPodu ctive in a technica cap.:i-

ty. -ownward, the teanm aproach o-ers pr-ogrammig reaited
clerical opponrunities to nri o roramm tri personnel. The team,
as originaily constituted, included a programmer techriician for
the clerical function. but two problems ato.e with this approach.

The work did not require a prograim e tecician because the
PPL procedures wee well enough dened 'that no programrnig
knowledge was required to operate it. Also, neither librarian
support rn secretarial support became fNiime jobs on the
project. We, thireforc, combined the t o ftdions and trained
a secretaryv to perform them. With two wee- of on-the-job train-
ing, the secretary was capable of acting as librarian by using the
PPL. Comhininn the twA jo bs also wOkedf wl Jf a work load

s..andm-.im b.ca'"se w-n programmim! work was heavy then

documndation was light, and vice versa.

The progi-amming techniques and stai-ndar.ds used by the team to
enhance productivity and visibility also worked as planned. Top-
down proigramning was similarly successful. System logic for
one of the major prograis Pan correctly the first tinie and never
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req;uhicd atc~m as teprograin was expandedl [0 its Il-1l Size.
I lSWSIcpni cugr. sinlce proQ'.1-ais usuaii11Y ran t
cnilhtI10iowi the rzirt Wore mwerca~y traceable to ncxvy
added functions. Top-dov) mm progvrarnminme also alitil te in -
teoriace -proh!--mns norrn~ally iassociated %with aiprgame
prf:ects, her ase in te ifaes were ai w s de lind and coded be-

fore anly cooii Mri etcts hat made use ed thme i- Ierfaces.

The Prodriri~PoIitio L ibrar rif by thc irr~nsc
i ar chieved its i t." of lei t'V v in' 0W , ll.- hI~>cricaI

aspects &F proret min' From the prorim ne-r and ileh
C I I lwin'mreaa;aic-h It also e.n[-

cI)urara'lcdi nod'dart of tx 1 -!piio'rantis ;::Lnd i~ adc, to-downii ;o-

erasthe experirnac, %mvus successhLi ther are st ill sorn
unanswered cl uwlon~is and urisohl'd mrlern. Miost ohs ;ous.
perh'aps. is 'v etnher *th .piro.:ei can beht '.u o lag pro-
jeels. The MYt enite it AW this H 0iit pro d cnn bu~I~ ii t it

needs to be tried. Th be 'nel ci aproachdin ud be to o e''n a pro-

ject with a sinji imgh level tearn to do ov sif a Ystezll dcsign anid
nurclzti de''el''vvent. Abter IWO oiclem is fo'v ;Oming. paun
roiers otti thc olii' 01 teamn co.-M ci O2Comi' err,', pro ' ram n mc's 011
teurms duvo'.1lo1iiIg major substes The / IC IHSitnal toam fli on d
nssumte uonr t c rview, Wdai' nd WM; Oak n'd inpe Ir-

proc:, co~ be ryvand at 'c.'r Wts tf ne'cess'm. it m'NQ

CC SIi~i- aI ' c C UI j tw n ov 'u i c oF t hi ovo opm a p

Piciaci h is is not necessa c'seo i al'i'
mcain 'cintmrahm'ion,' and At may M e even le'ss lirre. ny

cxase. the risk shouild be susotially reduAcd be cause of the oct

A second major question cone' ms teamn zonaotio d tra'in-
ing. Rcasc the teamn is a ic.-se. ni nilt i- icm'aea sys-

fern at a1 Vtstenhan-usnal pai, ~MeJ5  cooua'ton and gnAx

comunac o i sseantial It -is, thciCork d-';rraol tm-I

inmrn's bec *'.pewinced pt -ssiaonod i5tm'n th t'rmm2q~e

dIccr~ilhc. rV .ha'u -,h a m earr mly Ncod on o r poss il''' two

Ica expe cc gog'a mIrr 1-' larger -v' -ouldtforce thc
cld 3WI' i" to !', ad ' u in di a re zete of hW Am in

dailed a .' nd su ; O',O tlhcy rr-mP'hi .*P' '

ductv.v (Re' 'Ilitni ma be1 to plc ra'"'-x 01' ',

torsz po it'rF nt orf~4 in pratl that a''e extuniOW
exisitinig systns bds:p~zccne thern on tea-ms tlhat are ecip
hmg new systems.

'ri , s~,-tifof the chif prograinlter from amnri several cati-

didates may oe MOreC CIMIhCUit Ii an was at t anticpaed The
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cflizf p 'rmmmer is iespron~bW for :a?17 !71M n. m--,of and" fo-
technical2pceftto oi the prqjcct to a cuii~;tmcr a~if) his
ownl nanagerm nT ir~n, ina nag' cr mit ability andi expc;i-
cnce arc necessary o ~in~A cIic-- loustnri also
possess tho creadvity mid drive' to makcsigiivo' w.yhr cal

toti ins~ ki on nd tno a msM o~ncr iaro mu'' in
marking A hi" nribudon T.his essc.-ial ("f corkiulls
rarcdy an nr thyj - a-xi iflUivid-U.. 'I '&.U-' th'e 1IS.. (.. C

testing siiotfld prohw .- cen- e S par! of tiei S-,lion
procesn. Py'o hi * .r:rf ~ rs~' o i - first

before um i' en i r o v -r p roj ccIs.

0).-1', ~ *s qtieo I that ~ o US 1 cy a:s'kf'-' 'i '

cie og ramme~-rs m~ respomIdcd to the~ ci'' maw hv

found Mt.. iz MO to a degree of iai......s hard 1o

To sunamimzc there is Me~ An tBe Cair. r',.m Or-
ganiza~ti-on andt ,: :ithodobsgy tat has not hum Famr r ird' ueri.

Laid it is b,!icailly, a- furiioant01 -o -rn

Spr= producthi~h aan q~iit'.I cvo'- Me wim "it al his
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1. Programming Strategy

Recent work has advanced the techniques involved in the program
production process. This better way is based on the techniques of:

o Structured Programming.

o Top Down-Programming

o Programming Support Libraries

The use of these techniques results in improvements in manageability,
quality, productivity, and maintainability. A dscription of the
techniques and how each contributes to these improvements follows.

1.1 Structured Programming

Structured programming is based on the mathematically proven
Structure Theoremi which states that any proper program (a program with
one entry and one exit) is equivalent to a program that contains as
logic structures only:-

o sequence of two or more operations

o conditional branch to one of two operations and return

(IF y THEN b ELSE c)

o repetition of an operation while a condition is true
(DO WHILE)

Each of the three figures itself represents a proper program (see
Figure 1). A large and complex program may then be developed by the
appropriate nesting of these three basic figures within each other.
The logic flow of such a program always proceeds from the beginning
to the end without arbitrary branching. Where only these structures
are used in the programming, there are no unconditional branches or
statement labels to which to branch.

Figure 2 illustrates traditional code and structured code.
Structured programming reduces the arrangement of the program logic

to a process like that found in engineering where logic circuits are
constructed from a basic set of figures. As such, it represents
a standard based on a solid theoretical foundation. It does not require
ad hoc justification, case by case, in actual practice.

Original form, Bohm and Jacopini, Comm ACM, May 1966, See also,
Mills, Mathematical Foundations for Structured ProgrammLnng,
FSC-72-6012, February 1972.
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Any proper program is equivalent to a program structure which contains, at most, the members:

Sequence of two operations:

Sequence

Conditional branch to one of two operations and return:

IFTHENELSE

Operation repeated while a condition is true:

DOWHILE

Figure I. Structure Theorem
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Several practices are included as a supporting part of the
-technique. For example, strict attention is paid to the indentationof the logic structures on the printed page so that logical relation-

ships in the coding correspond to physical position on the listing. (SeeFigure 2). Thus, a pictorial represc1itation of the logic is gained from the
indentr ion. Another practice is that.of segmenting code into
reasonable amounts of logic that are each easily understandable. Each
segment of code (whose internal operations may be any combination ofthe basic logic structures) must itself represent one of the basic
logic structures. Thus, each code segment becomes a logical entity
to be analyzed, coded and read at one time. (See Figure 3).

High level languages can be made almost totally self-documenting.
For assembler level languages, macros provide the basic logic structures,
giving these languages the readability and self-documenting attributes
of higher level languages. The us:~ of the basic logic structures
coupled with indentation and segmentation rules, obviates the time
consuming preparation of flow charts.

Simple extensions to the three basic logic structures are allowed.
These do not affect the .spirit of structured programming, but do result
in more efficient use of computer time and storage.

1.2 Top Down Approach

Prior to actual implementation, functional requirements and software
architecture will have been developed and described in the documented base-
lines of the definition and design phases.

Traditional software development has evolved as a bottom up
procedure where the lowest level processing programs are coded first,
unit tested, and made ready for integration (see Figure 4). Superfluous
code in the form of driver programs is needed to perform the unit testing
and lower levels of integration testing. Data definitions and interfacestend to be simultaneously defined by more than one person and often are
inconsistent. During integration, definition problems are recognized.

3



IF p GOTO label q IF p THEN
IF w.GOTO label m
L function A function
GOTO label k B function

label m M function IF q THEN
GOTO label k IF t THEN

label q IF q GOTO label t G function
A function DOWHILE u
B function H function
C function ENDDO

label r IF NOT r GOTO label s I function
D function (ELSE)
GOTO label r ENDIF

label s IF s COTO label f ELSE
E function C functionlabel v IF NOT v GOTO label k DOWHILE functionJ function D function

label k K function I ENDDO
END-function IF s THEN

label f F function r F function
GOTO label v ELSE

label t IF t GOTO label a E function
A function ENDIF
B function ENDIF
GOTO label w .IF v THEN

label a A function J function
B function (ELSE)
G function ENDIF

label u IF NOT u GOTO label w ELSE
H function IF w THEN

M functionlabel w IF NOT t GOTO label y ELSE
I functionfunction

label y IF NOT v GOTO label k L function
J function ENDIF
COTO label k ENDIF

K function

TRADITIONAL

STRUCTURED

FIGUIRE 2. TRADITIONAL AND STRUCTURED CONTROL CODE



IF p TIIEN
A functio-n-
B function IF t THEN
IF q THEN G function

INCLUDE t-test DOWIILE u
ELSE - H function

C function ENDDO
DOWHILE r I function
D function (ELSE)

ENDDO ENDIF
CALL s-test

ENDIF
IF v THEN

J function
(ELSE)
ENDIF

ELSE

IF w THEN
M function

ELSE
s-test

L function
ENDIF IF s THEN

ENDIF F function
K function ELSE

E function
ENDIF

FIGURE 3. Segmented Code

5



Integration is delayed while the data definitions and interfaces are
correctly defined and the processing programs are reworked (and unittested again) to accommodate the changes. It is often difficult to
iSolate a problem during the traditional integration cycle becauseof the large number Of possible sources. MNnage. n tr fe iSineffec'tive dur inomuch of the traditionald ngelment ccle beause

t here is no coherent isiblep-roduct until integratioyn
The top down -aproach is patterned after the natural approach

to system design an d requies that programming proceed from developingthe control architecture (interface) statements and initial data
definitions downward to developing and integrating the functional units.
Top dom programming is an ordering of system development which allowsfor continual integration of the systemparts as they are developed and
provides for interfaces prior to the parts being developed (see Figure 4).In top down, structured programming, the system is organized into
a tree structure of segments. The top segment contains the highes level
of control logic and decisions within the Program, and either passes
control to lower level segments, or identifies lower level segments forin-line inclusion. This process contines for as many levels as required
until all functions within a system are defined in executable code.any system interfaces occur through the data base definition in
addition to calling sequence parameters. The top dowm approach requiresthat the data base definition statements be coded and that actual data
records be generated before exercising any segment which references them.

This approach provides the ability to evolve the product in a mannerthat maintains the characteristic of being always operable, extremely r
modular, and always available for successive levels of testing that
accompany the corresponding levels of implementation. The quality of a
system produced using the approach is increased, as reflected in fewererrors in the coding process. The act of structuring the logic callsfor more forethought, and the uniformity and single entry, single exitattribute of the structured code itself contribute to the reduction in
errors.

6
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Due to the segmented nature of top down programming, the resultingsystem is extremely modular in function and logic structure. The
,quality increase realized by modularity extends itself into the
.documentation. -The modular segments become natural units fordocumentation and for incremental learning of the system with a viewtoward maintenance and extension. Maintenance personnel begin learning
about the system by reading the topmost segment and continuing downthe various branches of the tree. The segments themselves are essentiallyself-documenting since the code in the segments is an elaboration ofthe structure logic of the original system specifications, and sincethe physical structure of the code on the printed page highlights that
logic through indentation.

The approach-introduces a significantly improved capability formanagement control of the software development effort by providing
continuous product visibility. Since the dL-eloping system is under-going continuous integratn,.the system statis is accurately reflected -rthrough the contents of the system library, i.e., completeness ismeasured objectively in terms of how mych of the system is operational.Managers can review the completed code to verify status and appraisethe quality of the software product,

The approach alters or eliminates some of the traditional milestonesusually associated with the program production process (see Figure 5).Probably the most obvious is the disappearance of any system integrationperiod; it is no longer required since the system parts are continually
being integrated as development proceeds.

Another area affected is that of initial documentation. In thepast, given a set of functional system specifications a detailed system
design proceeding down through a set of detailed program specifications

was written prior to coding. This has also been eliminated. Beginningwith the design specifications, the various iterations on the detail ofthe design specifications are expressed in the code and not in prose.
The developing system becomes the various levels of documentation,
eliminating inconsistencies between programs and their documentation
due to either lingual misinterpretation or temporal non-correspondence.

8



Bottom-Up:
Begin
Acceptance

Start Test

Design Code Unit Test I Integrate

Top-Down:

Begin
Start Acceptance

Test

Design U Code and Integrate

FIGURE 5. Milestone Comparison
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Conceptually, top down implementation proceeds from.a singlestarting poin: while conventional imnlementation proceeds from as
many starting points as modules inthe design. The single startingpoint does noc imply that the implementation must proceed down the
hierarchy in 7xarallel. Some branches intentionally will be developedearlier than ac-her branches. For example, user or other external
interfaces minit bo developed to Permit early training or hardware/
software integration.

In system. with user interfaces, the user can interact with the(functionally icomplete) system much earlier in the development hase.
This early interaction provides an op;pjrtunity to prepare user and
operator guides top dowtn (i.e., as user facilities are developed) andto validate ths guides.

-1.3 Programi_ - Support Libraries

A programm.ng support library is a set of office and computerprocedures desinfed for use in a program development environment.,The principal c', ctive of the library is to provide constantly up7
to-date represen--ations of the programs,an dtest data in both computer}land human rcada le forms. Ij The design of the procedures permits theclerical and record keeping onerations associated with the programming
to be isolated flom the programmer. The library includes thesefacilities:

o Update Procedures to store and modify programming data.
o Version Control to permit one version of a system to be usedas the baseline for the next. Since program segments unfold

through the use of CALL's and INCLUDE's, it is critical that
code un:ier development not be accidentally called or included.o Automat - Indentation of Source Listings to improve readability.
This fe.ture is a characteristic of library support, since
listing should be possible independent of compilation.o Office 'rocedures to proyide visibility of the code on hand
and to ensure successful operation of the library system.

1A



o Creation of Dummy Program Segments to allow execution
of a program throughout development as soon as the top-
most segment is available.

o Library Recovery Procedures to provide backup and recovery
of libraries or library segments.

.o Housekeeping Procedures to allocate, catalog, restructure
and maintain the libraries.,

o Library Status Data to record unit ownership, size, specifi-
cation and attributes which are needed to provide proper
library maintenance.

o Automatic Listing of current library content.
o Program Directory and Cross Reference to show the hierarchical

structure of units in programs and to identify macro usage,
called programs and included code for maintenance purposes.

o Module and Function Status Data to provide visibility of progress
to management. The contents and status of segments are made
available. This data should be correlated to the functional
capabilities of the program.

o Programming Activity Data recording, e.g., numblers of statements
modified and delivered and numbers of transactions in the program
segmen:s.

The library provides a significant aid to test and evaluation in thatthe current operational software system code is centralized to avoid ambiguity
of what is, and what is not, valid software as well as centralizing thevalid test program code. At every point in time, the overall system library
constitutes the current operational system. Consequently, considerable care
is taken to see that new segments and data item definitions have been properly
tested before they are added. This testing is carried out in development
libraries, in which segments are created as needed, exist until the units havebeen testing and added to the system library, and are then purged. Considerably
more leeway is permitted in adding to a development library than in adding tothe system library. For example, if a segment references a data item for which
it is not authorized, it cannot be added to the system library. Such anunauthorized access is permitted in a development library, although the user is
warned that he has committed an apparent error.

11



2. Test Approach

The top down approach to testing and integration starts with
the testing of the highest level system segment once it is coded.
Since this segment vill normally invoke or include lower level segments
c-ode must exist for the next lower level segment. This code, called
a programstub, ay be empty, may output a message for debuggingpurposes each time it is executed or may provide a minimal subset of
the functions required. -These stubs are later expanded into fullfunctional segments, which in turn require lower level segments.Integration is, therefore, a continuous activity throughout thedevelopment process. Duringtesting, the system executes the segmentsthat.have been completed and uses the stubs where they have not. it is

this characteristic of continuous integration that reduces the need forpecialtest ec atau. drivers' The developing system itself can supporttesting because all the code that is to be executed before the newlyadded segments has previously been integrated and tested and can be used
to feed test data to the new segments. For this reason, most problems
are localized to the recently added code. As the new segments are testedwithin the developing system, the control architecture and system logic
are also tested.

The simplest kinds of stubs are those represented by non-functional
dummy code for debugging and testing. These simple stubs can be automati-
cally created by support library facilities. Functional stub s  which may

.be compared to drivers, provide data to the higher level segment. Thesefrequently used stubs may provide data through:

o fixed parameters

o simulation, e.g., using random numberso simplified or skeletal procedures

These stubs are generally simpler to prepare than traditional driver
programs and often became part (e.g., the interfacing code) of the lower
level segment.

12



Top down programm-ing provides a basis for capturing performance
data during the development cycle. By replacing each dummy with a
timed sequence that utilizes the estimated length of time for that
function, the developing system becomes a model. As dummy routines
are replaced with working code, the performance results can be appraised
against the performance objectives. In a similar manner, storage allo-
cation can be modelled.

The testing cycle can be directly correlated with the phases of
software development: definition, design, implementation and test
(refer to Figure 6).

Test requirements identify the functions to be tested, specify
'the number of cases, the ranges and limits of data and describe the
hardware and software environment. The test requirements specify the
degree to which the product goals: function, interaction, performance,
operability, and usehility are evaluated. The Rvstem renuIiremntn nrovide
definition for software development.

The test specification details the test design approach and test
structure, and identifies the methodology and procedures for testing.
The test specification-is analogous in content to the software design
specification. The functional part of the specification is subject to
change control so that the specification tracks change to the software
specification.

The design review tests the software specification compliance with
system requirements and assesses implementational feasibility. The
review also evaluates accuracy, compatibility with other software and
hardware and compliance to standards. The specification is the baseline
for implementation.

After the test specification has gone through a design review in
conjunction with the software specification, test procedures are developed.
A test procedure is the series of actions required to verify that a software
function meets its specifications, doing what it is supposed to do and
nothing else. These actions may include:

o Configuring (software and hardware)

o Conditioning the process

13



DEVELOPMENT I

TEST

Requemn
1, Dsgn Test

Dns n Spec

Buld Tet Spe

DTlems T Pc t Develop BuId Test Pot lop
Aet Teest

Oulyt

Cevtom, Rev.w

Path-Merg
Fu-clo Tell

Build Tell

Labb;ess . Accept Test

FIGURE 6. Test Phasing
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o Introducing data

o Initiating executioin

o Collecting intermediate/final data
o Displaying intermediate/final data
o Comparing actual to expected results
o Recording test results

The use of dummy code is viewed as special cases of configuring andconditioning software for testing.

...... . -tools . ..thn iP.. .... -ro ed ud e b..ethem s e e als ib e

Mandator- use of a management controlled system library promotes
rapid resolution of interface problems and a steady increase in system
performance and reliability.- Control is obtained by requiring that an
update to the syst; library be c6nditioned on proof of successfultesting
This minimizeh the likelihood of any softwaie change getting into thesystem that would regress it and, therefore, preclude its release. Theverificatirn procedures are reviewed by the manager whose approval isrequired for update.

Path-merge testing combines the processing ability of two or morefunctionally related segments in order to test interfaces. The testingprogresses as each lower level segment -is added to previously checked
out higher levels of the system.

Function testing verifies for each identified function that thebaseline specifications have been met. This normally requires everyline of code be executed. The desirable way to test a function isto interface it with the checked out portion of the system and testit by driving the total system. This type of testing accomplishes path-
merge and function testing in one testing operation. When this isnot practical, an individual driver is developed to test the function.Additional testing then must be done to assure that the function interfaces
properly with the system.

Build testing determines the ability of the total software toperform in both nominal and non-nominal situations. This testing isthe level after path-merge and function testing.

15



Performance testing determines if the product performs within.an acceptable time frame and/or storage space as described in the
specification. Simulation and modelling.programs can be used toevaluate designs and predict the performance. Although tl1ese
programs are on the periphery of what may be considered testing,
they are valuable-in design and product evaluation.

After the test execution, the test results are documented. Testresults state how well the" actual and expected results agree and explainany differences. The test specific::tions, test procedures and testresults provide a complete record of the particular test for future
reproduction. Conclusion and recommendation sections provide
direction for proceeding to the next level of testing or for making
changes to the test, as appropriate.

The documentation review is a test of the validity of thedocumentation. Each deliverable document is checked against all
other related documents to insure consistency of terminology andtechnical accuracy.



Management Concepts

The methodology described in the preceding sections provides
a basic level of technical control over software development and
test. The project manager must maintain a balance of product (orservice), resources; and schedule throughout the project. Tools

exist for recording and.reporting actual, estimated and budgeted
resources and schedules. In most traditional software projects, the
manager has limited Visibility of the actual product, and thus has
difficulty in maintaining the necessary balance. The difficulty is
compounded by changes and problems. In top down software projects,
the manager, through the libraries, has precise product visibility andcontrol and high confidence that the product is truly what the tests todate indicate. In either approach, the manager has a risk that there
are inadequacies in the design or the estimates for the remaining
development and-test activities.

The management concepts presented in this section enhance the
visibility provided by normal configuration management procedures.
These concepts are called progranming discipline, testing discipline,
and planning discipline. Each of these is keyed to the system library,
which reflects the current status of the product being implemented.

The program-iing discipline assures that the system design reflected
in specifications is consistent at all times with the software product.
Figure 7 illustrates ie iterative process of programming and testing
of the software, following baseline design. All completed code must
pass its specified testing requirements. If test results are satisfactory,
the code is added to the system library. The system library is always
available for independent product testing.

The testing discipline (Figure 8) ensures that all software interfaces
properly and performs its intended functions prior to release. The testingdiscipline also provides an important measure of technical performance.
Mandatory use of the controlled system library for all levels of testing
ensures early resolution of interface problems. The results of tests
form a basis for determining the current level of capability that exists,and product readiness for formal release to acceptance testing. Succesr-
ful tests are reflected in the implementation plan.
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The planning discipline (see Figure 9) includes the following:
o systematic, structured management review meeting to control

plans, changes, problems and progress,
o formal implementation plan for-use as a record of progress

made, plans, milestones, and actions taken by management,
o controls for requirements and software changes,
o provisions for documenting and correcting problems.

The interrelated procedures are the basis for management control at the
technical working level.

A critical review of the technical status of software implementation
and test is key to early assessment of situations impacting successful
completion and delivery. In mo st project situations, a weekly cycle
for review and reporting the technical status of implementation and
test will assure adequate management visibility. Figure 9 illustrates
the inputs to management review. Reviews would typically be conducted
as described below.

Each senior manager conducts a meeting of his line managers and
key technical personnel to review the implementation plan, discuss
problems, status, schedules, and changes; and document recommendations
for revising the implementation plan. The meeting prepares each senior
manager for the program manager's meeting where decisions are reviewed
and unresolved problems are addressed.

The program manager's meeting is attended by the senior managers,
and contract, financial and configuration management personnel. This
meeting considers plans, schedules, problems and change proposals affecting
technical, financial or contractual performance.

The implementation plan is the basic management tool used in planning,
reviewing and reporting the technical aspects of system development and
testing activities. The implementation plan forms the basis of much
of the discussion during the review meetings. At all times, the plan
reflects the best technical judgment of the management team implementing
and testing the software.
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Programming and testing tasks which are reflected in the pl;n
are cre-ted from three sources: baseline specifications, authorized
changes and problems. Each of these sources must be carefully
documented and control-led.

-Specifications are required in all large software projects and
form the baseline for implementation. The requirements (what) portion
is usually subject to customer approval and change control. The design
(how) portion normally is subject to internal project control.

Proper coordination and review of initial requirements and of -
revisions as they-are made results in a more stable system. The
objective is to firmly fix the responsibility for-the acceptance of
changes with management, which shields the individual pr ;i;rammer from
severe pressures to accept and implement proposed changes. Adequate
technical analysis and evaluation of all resources prior to making
implementation decisions is ensured by coordinating all requirements
changes with the management team. Unnecessary and costly changes
and the unstable influence that their implementation would have upon
the software may be avoided almost entirely by following the policy
to commit implemen.ation resources only after adequate review. Formal
coordination and review of changes ensures adequate documentation and
dissemination of the changes being accepted, as well as the proposed
changes not yet acted upon, and the requests for modifications which
have been rejected.

Once a segment has been added.to the system library, anyone who
experiences or observes a difficulty with that segment is charged with
the responsibility to report the problem. Errors made and corrected
prior to adding a segment to the system library are not recorded. Reported
problems are placed in an active file of open problems and remain on
the open list until appropriate closing action is approved through
management review. Problems may be closed by: submitting modifications
to correct the deficiency; stating an operation restriction on the use of
the segment and the operational procedure to be followed; providing proper
interpretation of requirements and intended use.
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4. Documentation

The software documentation strategy is based on the self documenting
nature of structured programs. The strategy exploits three documents:
detailed requirements, software design and-listings. Since the listings
are -the product of software development no new program documentation
is produced after the design phase except the code itself.

A software development project has two major checkpoints: design
review and acceptance test. There is documentation produced in the project
phase which precedes:each checkpoint. The analysis and design phase
produces a design specification (typically including detailed requirements
and software architecture) and, sometimes, a development plan, a standards
manual; a test specification or their equivalent. The development phase
produces program listings and program documentation (traditionally
including narrative and flow charta) and, sometimes, user and operator
guides and test procedures.

End item documentation (excluding listings and user and operator
guides) which traditionally is prepared after the design phase consumes
5 to 15 percent of the progranmming project budget. The elimination of
this documentation represent a significant reduction in project cost.
The primary purpose of this documentation is to support program maintenance
and modification.

The strategy simply is to eliminate high cost, low use program
documentation. This step can be taken in traditional programming
projects with moderate risk if impeding system testing and subsequent
program maintenance. Because of the improved readability, structured
programs are (nearly) self documenting. Thus, in projects employing
structured programming techniques, program documentation can be eliminated
with minimum risk. This strategy provides as final software documentation,
the design specification and the listings. For the strategy to succeed,
the design specification must be kept current through change control
(see Figure 10) and must adequately document interface standards in addition
to the architecture and functional structure.
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Figure 11 illustrates the software development process and relates
-the documents to each phase. As the illustration suggests, the purposes
of documentation are to discipline a subsequent activity and to record
the results of an activity.

The system recuirements provide a single, complete statement of

the requirements that the software is to satisfy. Ideally, the system
requirements are sufficiently complete av - detailed to provide a basis
for system design. However, in most projects a detailed requirc:::nts
statement is part of the design documentation. As a consequence, some
plan distinguish functional (requirements) and design specifications.

The test requirements identify the functions to be tested, and specif,
the number of cases, r nges and limits of data and hardware and software
environment. -The test requirements are specified at the same time as
the system requirements. Test requirements discipline preparation of the
test specifications.

The design specification containn two major parts: requirements
and architecture. The parts are distinguished because the rquirements
are subject to custc .er (external) change control and the architecture
is subject to projec.. (internal) change control. This control provides
a singificant benefit: an up-to-date specification which will be
incorporated as part of the end item d-,cumentation.

The test s-a cifiction specifies a desi -n approach and test structure
which will demonstrate that the software satisfies requirements. The
test specification is similar in content and format to the software
specifications. The test specification also is subject to change control,

The standards manual disciplines software development,

The implementation 9Vn is a primary management control document.
The maintenance manual is the end item software product specification

which provides a qualified programmer the information required to modify
or maintain the software. This manual augments the up-to-date design
specific,tion with annotated machine listings. These listings provide
completed deliverable documentation at the time of system acceptance.
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The user and operator manuals provide two types of information.
First, th :y provide the procedures to set up or initialize the
-system and the minimum equipment configuration including system
generation constraints, parameters, default values, device assignments,
etc. Second, the manuals cover the user techniques, messages and
operatcr actions..

The test procedures are the detailed procedures, test data and
expected results required to conduct a test. The controlled, up-to-date
portion of the test specification is considered to be part of test
procedure documentation.

The test results state how well the actual and expected results
agree, and explain any differences. The test results and associated
test specification and procedure provide a complete record of the
particular test for future reproduction. Conclusion and recommendation
sections provide direction for proceeding to the next level of testing,
or-for caking changes to the test, as appropriate.
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Part I BACKGU UND

host computer prograns are never designed; they are created on
the coding pad. The blame for this falls on three parties:

1. Programming managers. Most managers are overly "output
:oriented". Since code is the largest part of the final

_product, they focus their attention on coding, diverting
attention away from the more important task -- design.

Educators. Most programming schools, classes, texts,
etc. teach coding. Program designing is almost

completely ijnored.

3. Programmers. Most programmers are totally unaware of
good design strategies and techniques.

The purpose of this paper- is to begin solving this problem, by
defining a set of d'c.;ign measures, strategies, and techniques
collectively knot. a; "corposite design". Part I sets the stage
for this by discussing the realities of today's programming
environment, discussing the three major factors of a programming
effort, and defining some initial concepts, definitions, and
notation- for Composite Design.

During the initial development of this paper, the term "modular
desigcn" vas used. However, several readers of the paper remarked
that they had preconceived notions of modular design which they
confused with the concepts in this paper. Hence, a new term,
Composite Design, was chosen to represent these concepts.



I. PROGRAMMING TODAY

Perhaps the biggest problem facing programming today is the
extreme difficulty and cost encountered in creating and
maintaining large programming systems. An over-used term,
"modularity", is often given as the answer to this problem.

To-a large extent, modularity, when interpreted correctly, is
the answer. "In -pafticular, appropriate structuring of the
system, its documentation, the project, its management, andall communication- would greatly enhance maintainability and
growth properties and extend the lifetime of large, complex
programming system-s."[ 1] Note the word "appropriate" in this
quotation; this is key to many later concepts.

In the industry, there is a lot of experience and knowledge,
both published and upublished, in the structuring of
documentation, project organization, and project phases.
Little thought is ever given to the structuring of the system
itself. Hence, it appears that we can -structure the
programming development proce'ss, yet we can't structure the
pro-gram.

One obvious argument at this point is that we do know a lot
about programming. To a certain extent, this is true. We're
reasonably good at designing the external aspects of a
program, e.g., languages, performance constraints, human
factors, file design, etc. We're also fairly proficient in
the actual programming of a well-defined function. Forinstance, when faced with the task of programming a
subroutine to convert binary numbers into decimal numbers,
most programmers would have little difficulty in
flowcharting, coding, and testing this subroutine using one
or more techniques for coding, testing, etc.

Also, there is a lot of literature on the internal algorithms
of a program or system, e.g., I/O buffering, paging,
scheduling, sorting, memory allocation, and file searching.

To summarize, we know* how to

1. Design the external aspects of a system.

2. Design the internal algorithms of a system.

3. Design and code individual subroutines or programs
within the system.

-----------------------------------------------------------

*I'm using "know" in a relative sense here. Certainly, our
knowledge in these areas today is still quite limited.



Note the missing link. How did we get fro . step 1 to step 2

or to step 3. This missing link, the subject of this paper,

is:

4. Design the internal structure of a system.

The missing link is better illus'trated by an example which

describes, a "typical" programming development effort.

Support- a rudinentary information retrieval system is to be

developed. It will-operate as an applications progran, being

multiprogrammed with other applications under the control of

an operating system. The information retrieval system

com'.tunicates with a group of terminals and a data base of

abstracts.

The first step, involving several systems a-alysts, is to

specify the external characteristics of the .-.. tem. They

specify the language seen, by the terninal user. They also

specify the data- base design and certain p, erformance

constraints, such as termi-n(l response time and data base

search time.

'The analysts go on to a second step, the internal design of

the -system. They design an algorithm to service the

terminals and an algo-ith' to search the key words in the

abstracts, Next, they hand their specifications to a

programring group for implementati,..

The pro: .-amming group takes over., armed with a document

containing specifications for the language, the file design,

per ormance constraints, and several algorithms. They

recognize that the first step for them is to define the

modules* in their system, since having a "modular" design is

apparently a good trait. They regard this step very

infornally** and as a nuisaiice, since it appears to be an

obstacle to flowcharting and coding the system. They perform

this step usually using a comb' ation of the following

strategies:

---------------------------------------------------------

*I use "module" in a loose sense here, equating it to

"subroutine". It will be more formally defined in section 3.

**I say "informally" for two reasons. First, I have never

seen a project schedule that recognized a ,"structur;.l design"

step between external design and module design. Secondly,

its significance is always ov .:looked. I have seen

programmers criticize otlher programmours' eternal designs,

detailed module designs, and code; I have never seen a

modular structure criticized.

'I



I. Draw an overall flowchart of the system, making each
block in the flowchart a module.

2. Create an "initialization module", a "termination
module",.and several "processing modules".

3;. Assign each programmer an arbitrary "piece" of thie
system, allowing each programmer to work out his own
structure. -

4. -Create a module to handle "all input operations",
another to handle "all output operations".

5. Look for identical sequences of operations throughoutthe system, creating a module for each sequence.

Once this step is done, the programmers' sigh with relief and
perform their "real work", internal design, coding, testing,
and (alas) debugging of each module. Finally, after severalschedule slippages, a few design changes that unexpectedly
affected almost ev6ry module, and some ast-minute piecing
and padtching together, they get. the system on the air. Over
the next year, a series of modificaticils are requested. Each
modification results in unexpected large internal changes.
Finally, because the installation cannot afford paying astaff of programmers whose job is simply maintenance andmodification of the system, the installation reluctantly
stops all modifications. Now, the static infor;,ation
retrieval system cannot cope with the ever-changing needs ofits users, so the users move elsewhere. End of a sad, buttypical, tale.

The system died because no one recognized thz need for"appropriate structuring of the system". Also, it willbecome obvious later on that the five strategies listed are
poor design strategies.

Facts of Life

The following list is a set of generalizations about today's
programming environment. Although most of them are obvious,
it is worthwhile to think about each one before proceeding-.

I. Programs have a long life. This is illustrated by thepopularity of emulators on today's third generation
systems. Programs written ten to fifteen years ago arestill in operation.

Another illustration is the number of releases orversions of programming- products. For instance, OS/360
has had 21 official releases. Its smaller brother,
DOS/360, has had even more.

5



As a corolliary, we can say that prourar:s never achieve

stai.lity. They never achieve freedom from bugs nor

freedom fron additions or che.nges.

2. Prcgrammers spend a maj .rity of their ti:%,e correc ing

errors. If -you obser\e a cr:os; s.c.tion of progrant r,

(even those devel ping nE2. programs), you will find that

most of thei;1 time is spent in testing, debugging, and

correcting e :rors._

3.. More often than not, technical designs are determined

based on subjective perf;onal preferences. I have heard

programmers say, "To design a general and extendible

system, data !:hould reside in a set of flexible control

blocks." This-statement has no techni .l cmr..t and, as

I shall later show, is far from the tr.:.th. In fact, the

opposite of this statement, "... dat :hould not reside

in a set of flexible control blocks" is closer to the

truth.

4. We don't follou the principle of standing on others'

shoulders. "Perhaps t.he central problem we face in all

of computer science is how we are to get to the

situation where we build on top of the work of others

rather than redoing so much of it in a trivially

differcnt way."[2)

Picture the electrical engineer desigi.ing a new T.V.

set. He certainly dor:~ril't design each vacuum tube,

transistor, and cap::citor all over again; he relies on

existing components. In fact, he normally designs on a

much higher level, using "off-the-shelf" power supplie ,

oscillators, etc.

This analojy certainly doesn't apply to programmin

to.day. In genrIal, programming technologies haven't

aC -anced to this level. Furthernore, programmers aren't

encouraged to operate in this mode. In the majority of

new prograr:.ing systems, every single instruction is

coded from scratch.
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2. .QUALITY, COST, AND TIME

Quality, cost, and time are the three principal factors in
any progJramming effort. A programming project is an
optimization problem where we attempt to optinize one, two,
orf three of these factors subject to possible constraints on
the other factors. For e:ample, a typical programming
project might have-the following goal:

Produce a .program, maximizing its quality, but subject
to constraints on cost (budget) and elapsed time
(schedule).

The factor of gLality can be subdivi(!ed into factors of
reliability, maintainability, modifiability, generality,
usability, and performance. Cost can be subdivided into twomajor costs, labor and machine time. Since Composite Dr.sign
has a positive effect on many of these, I will identif, the
relationships between each of these factors_ and Composite
Design.

Since you will probably be critical of many of the following
claims, I would suggest rereading this section after you readthe remainder of the paper.

Reliability is a measure of the number of errors or "bugs"encountered in a program. Although no quantitative data isavailable, Composite Design appears to have a positive effecton reliability, since modular programs are less complex andtesting ot modular programs appears to he easier and much
more straightforward.

Maintainaliility is a measure of the effort and tin requiredto fix bugs in the program. Composite Design has nosignificant effect on maintainability. However, since I fe .l
that errors can be isolated faster in a modular program,future measurements may turn up a positive relationship.

Modifiability is a measure of the cost of changing orextending the program in the future. Composite Design has avery positive effect on moeifiability. This is substantiated
in later sections.

Generality is a measure of the scope of functions that aprogram performs. Usability is a measure of the humanfactors of a program. Composite Design has no known effecton these factors.

Performance is a measure of the efficiency of a program, for
example, in terms of execution speed and storage used.Composite Design can have a slightly negative effect onexecution speed. This relationship is discussed in section
twelve.



Coipsite Design appears to have a positive effect on the

crwt of developing a progra. Although no quantitative proof

is available yet, several trends a : appareft:

1. Progri Mrer prou;ctiit- in nP.eno fting a progri-,

desigr :d via Composite Design ap'lc:rs to be hIigh( r than

Snornal. Thi is expected since productivity is

-inversely r l at - d to the complexity (interactions and

vdeperlenciesC in a progran. Coip* o ,te Design creates

progrm with "icoosely coupled" (inik~el n d e n t) parts, thur:

reducing the interactions and 
dependencies.

2. Design changes are cheaper because 
they normally affect

only one part of the program.

3. The design of th. program is very visible and usually

understandable. This increa' 's productivity and iso

eases the process of adding new prograuners to the

project.

4. Testing of the prograd-can proceed in a straight-forward

sequence of steps. In practice, this reduces thu

complexity of testingand allods testing progress 
to be

measured.

These points are illustrated in sections nine and ten.

Composite Design, to date, has had no observable effect on

the elapsed tine of a project.



3. CONCEPTS AND DEFINITIONS

Today, "modularity" is a popular term. Often, terms such as"modular" are added to the names of programs, to the titlesof books, etc. because, "to be modular is to be good."Jn fortunately, "modularity" is a widely misused and ill-Understood concept.

The first order of business is to define the term module.
For now, we will not distinguish betueen "g'ood" or "bad"modules, but simply define the basic characteristics of amodule. A module is a group of one or more programstatements with -he following characteristics:

1. The statements are lexically together. That is, whenviewing a listing of the statements, the statements arephysically together on the listing.

2. The statements are bounded by identifiable boundaries(e.g., START-and END statements).

3. The statements are collectively referenced by a name(the module name).

4. The statements can be referenced, by the module name,from any other part of the program.

Hence, we see that the module corresponds to structuralentities is most languages, such as the subprogram andfunction in FORTRAN, the procedure in PL/I and ALGOL, and theCSECT in OS assembly language.

The purpose of a module (at least those module:, containingeoecutable statements) is to receive some input data, performone or more transformations on the data, and return soneoutput data. To depict this, we will i:se the following form:

CALL SQRT (A,B,C)

which means - execute nodule SQRT, where the data named A, 8,and C are the input and output data.

For purposes of this paper, we will make the following
assumptions concerning modules:

1. When a CALL statement is executed, execution in thismodule is suspended until execution of the called noduleends.

2. When execution of a called module ends, execution of thecalling module resumes with the statement immediatelyfollowing the CALL statement.

C.'



3.- When eocution of a DOdiule ends, ex:ci. .o n LosumeS in
the cai ing module. More plainly stated, "all modules
return to their callers."

Points o:e and two are sinply pop'lar conventions. Point

thLrc:e. is a necessary condition i" C .1posite Design.

Graphical notation- plays an important part in Composite

Design. The notation- is illustrated in Appendix A. The

following example will explain the basics of the notation.

B T T

From this diagrarm, we c.-n determine the following:

1. There arc three modules, A, B, and C.

2. Some-here in module A, there are at least two CALL
statemen;ts, one for module B and one for C.

3. Scmewhere in module B, there is at least one CALL
statemi nt for L;odule C.

4. B rece-ives an input of X and returns an output of Y. C
receives an input of S or T, and passes S or T back as
output, respectively.

5. B is subordinate to A. C is subordinate to both A and
B.

Note that this type of diagram shows only structural
relationships. It does not imply any procedural or

algorithnic relationships. -For instance, it does not tell us
wh !ther A calls B before it calls C, or vice versa, how many
t- ies A calls B, whether A calls B and C everytime A is
executed, etc.

An alterriate method for illustrating the parameters is shoin
below :



B 2 
IN OUT

31 X y

2- T T

C 3 S S

A key, and often misunderstood, definition is the function of
a module. A module's function is the transforiation(input
to output) that occurs when the module is called. In otherwords, a module's function is "what happens when that moduleis -called,,".

Note that the function is related not only to the operationsperformed in that module, but also to the functions of anymodules called by that module. When speaking of a module'sfunction, the module should be viewed as a black box. That
is, we shouldn't care how the module perforns the function.In fact, te don't care whether the function is performedentirely within the wodule or uhether the module calls othermodules to perform the function.

Understanding this definition of the function of a module is
crucial to understanding Composite Design.

A seqment is a group of statements having some of thechar.cteristics of a module. The statements are lexicallytogether, bounded, and may or may not have a collective name(segment name) . Modules are comprised of one or moresegments, hich are either placed in the nodule originally orare copied into the module at coupile time. The concept ofa segment is not used in Composite Design, although it is
soeetimes used in the later design and coding of individualmodules (e.g., structured programming [3]).

The fan:out of a module is the number of unique modules that.re called from that module. For example, in the previousdiagram, the fan-out of module A is two. The fan-in of amodule is the number of unique modules that call that nodule.In the previous diagram, the fan-in of module C is two.



Throughout this paper, I use two terms, the p 2grmi and the
prohn. The pronrd is what we're designing. The problem
is the reason for the progrLam. That is, the progran is a
solution to the pr oblem (or class of problems).
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Part II MEASURES OF IIODULARITY

The most important consideration in program design is having a
set of objective measures of the design. With such a set ofmeasures, we can objectively evaluate the "goodness or badness"
Of a design.

The two most important measures in. Composite Design are module
strengt:i and module- coupling. Section four defines module
strength, which is a measure of the "goodne. , of an indivudalmodule. Section five defines module coupling, hich is a measureof the interconnections and interrelationships among modules.
Section six defines several other less important measures ofmodularity.



4. .MODULE STPENGTH

The optimal modular de-:ign is one in uhich the relationships

anong ele ,nts not in the same module are mininized. There

are two w:.-.:; of achieving this - -minii-. ing the el.: tiionships

au,.1 rnod.iles and maxiii ing reli.tion -i.ps aunn- e : nts in

the same ::odule. In practice, both ways are used.

The -second method, maximizing relatienchips among elenc. ts in

the -same module, is the subject of thi.. section. :'Elu unt"

.in this sense means any form of a "piece" of the module, sucn
as a statement, a segment, or a "sub-function".

This measure, known as module strength or binding, is one of

the the most ia portant measures of-a modular design. All

other thinqs being-equal, a module with high strength is

"good", and one vith low strength is "bad".

The scale of str -:gth, from highest to lovest, is shown

below:

1. Functional

2. CorFnicational

3. Procedur;il

4. Classical

5. Logical

6. Coincide.:.al

The scale is not linear. Functional binding is much stronger
than all the rest and the bottom two are much weai.er than all

the rest

For each type of binding, we will define it, give an example,

anii try to rationalize why it is found at its particular

position on the scale. We will see that high module strength

h,'s a positive effect on programming cost and on program

quality (in terms of extensibility and mzaintainability).

COINCIDENUAL BINDING

Coin idental binding occurs when there is no meaningful

relaiionship among the elements in a module. Coincidental

binding is usually the result of one of the following
situations.

1. An exis ing program is "modularized", by splitting it

- apart into modules.

2. Modules are created to consolidate "duplicate coding" in

other module;.

i 'I



As an example of the second situation, suppose the following.-sequence of-instructions appears several times in a module orin several modules:

A = B + C

GET CARD

-: PUT OUTPUT --

IE B=4, THEN-.E=O

A well-intentioned programmer may analyze the situation and
decide to replace -all such sequences with a. CALL to module X,and then create a module X containing these fourinstructions.

Module X is now probably coincidentally bound, since thesefour instructions have no apparent relationships among oneanother. Suppose in the future we have a need in one of themodules originally containing these instructions to say GETTAPE ICORD instead, of GET CARD. We now have a problem. fwe modify the instruction in module X, it is unusable to allof the other callers of X.

It is only fair to admit that, independent of a module'sstrength, there are instances when any module can be modifiedin such a fashion to make it unusable to all its callers.However, the probability of this happening is very high ifthe module is coincidentally bound.

LOGICAL BINDING

Logical binding, next on the scale, implies some logicalrelationship between the elements of a module. An example is
a module which performs all input and output operations tort,he program or a module which edits all data.

The logically bound "edit all data" module would probably beimplemented as follows. Assume the data to be edited aremaster file records, updates, deletions, and additions.Parameters passed to the module would be the data, and alsoa special parameter indicating the type of data. The firstinstruction in the module is probably a four-way branch,going to four sections of code, edit master record, editupdate record, edit addition record, and edit deletionrecord.

Most likely, these four functions are intertwined in some wayin the module, because tie programmer took advantage of the
fact that they exist in the same module. If the deletionrecord changes and requires a change to the edit deletionrecord. function, we probably have a problem, since thisfunction is intertwined with the other three.

15



In short,. loijicl bindi j usually results in tricky code

uhich is difficult to modify and in the passing of

unneces :.iry paraneters.

CL, F)C.' 1, B T!DI NN

Classical binding is the same as locica) binaing, except the

elercents are also -related in tirc. - Thc\t is, the logically

bound elemenls3 are executed sequntially in time.

The best examples of modules in this class are the

traditounal "initialization", ter in a tionl", "hious.keepin l"

and "clean-up" modules. Elements in an initialization odule

are logically bound because ,,initia' i zati o n " rr.prefents a

logical class of functions. In addition, these eler.nts are

related in tine since the eler:ents are executed together,

sequern ially in time (i.e., at ,,iiiitialization" tirtc)

Modules with classical bindin! tend tomexhihit all of the

disadvantages of strictly logically bound modules. Houver,

classical modules are higher on the scale sinc they ted to

be sinpler, si-nce ..11 of the elements zare usually executed at

one time (i.e., no parameters and logic 
to determine which

elements to execute).

PROCEDURAL_ INDIiG

Procedurally bound modules are modules whose el ents are

relal! d in respect to the procedure of the program.

procedurally uuund muuu-es are the result of flowcharting the

prollem to be solved and then -defining modules 
to represen:t

one or more blocks in the flouchart.

The practice of designing 
by drawing an "overall flowchart"

of the program usuzlly results in modules with procedural

binding, since flowcharting is procedure-oriented. To

illustrate, a.nsume the following flouchart represents the

four sequential processes that 
make up a particular program:



START A

C

D END

If we were to use this to define the modules in the program,we would have procedurally bound modules (by definition).
Typically, structures of procedurally bound modules for this
program might look like this:

OR

B C D A,-1IB C D

Procedural binding, although high on the strength scale
because of a close relationship to the problem structure, is
still far from the ideal - functional binding. The reason is
that the procedural processes in a program are usually
distinct from the functions in a program. Hence, a
procedurally bound module can contain several functions or
just part of a function.

COMMUNICATlONAL BINDING

A module with communicational binding is a module with
procedural binding with an additional characteristic - the
elements "communicate" with one another. That is, the
elements in the module either reference the same set of data



or. they pass data among themselves, e.g., the ouctpUt f one

eleMent is the input of another element.

Consider the folloing. modules:

-A - upd:te-record in data base and record the record in

audit trail

-B calculate new trajectory and send 
it to terminal

C - update -record in data base and read next

transaction

lModule A has communicational binding, since 
the elements use

a common set of data (the record). module B ;iso has

conmunicational bin-ding, since the output of the first

element (the trajectory) is the input to the other element.

Module C has procedural binding, since the elements do not

communicate.

Coun. a t io n a binding is higher on the .scale than

procedural binding since the elements in a- module ith

coizuunicational binding have a stronger "bond". That is, not

only are they procedurally bound, but they reference the same

data.

By now, you may have observed that a mo-ule can partly or

. holely hav e the characte:istics of mc ,! than one strength.

If a module coinpletely exhibiis sevural , ,pes of strengths,

we classify it by the hiqhr streng;h. For instance, a

module with communicational binding 
also has, by definition,

procedural binding. ng..wever, we classify it by the higher

strength, communicational binding.

A modcle wa ich partially exhibits several strengths is

cla:.;sified accordinq to the looer strength. For instance, it

a mudule has three elements, all of vhich have procedu,?al

biniding and tuo of vh :4 hc.o communicational binding, the

module has procedural binding. A module with part classical

binding and part procedural binding (e.g., "read all input

transactions and all master records and then print report

headings") is clas-ified with the lower strength, classical

binding.

FUNCTIONL BINDING

Functional binding is at the top of the strength scale. In

a functionally h(:und module, all of the elements are related

to the performa nce of a single function.

A question that always arises at this point is - what is a

function? In mathematics, Y=F(X) is red "Y is a function F

of X." The function F defines a transformation or mapping of

the independent (or input) variable X into the dep(endent (or

cutput) variable Y. Hence, a - function describes a

4f



transformation from some input data to some output data. In
terms of programmning, we broaden this definition to allow
functions with no input data and functions with no output
data.

In: pratice, the -above definition does not clearly describe a
functionally bound module. One hint is that if the module
does not fit thedescriptions of the other types of binding
(commut cational, p procedural, classical, logical,
coincidental), it is probably functionally bound. Another
way of learning -to recognize functional binding is simply to
use Composite Design. After finishing this paper, you should
have a clear concept of functional binding.

Examples of functionally bound modules'are:

Compute square root

Obtain random number'

Write record to output file

Delete record from master file

The first module, Compute Square Root, is a function with an
input and an output (square root of the input). The second
module, Obtain Random Nlumber, is a function with an output,
but no input. The last two, Write Record to Output File and
Delete Record from laster File, are functions with an input
argument, but no output argument.

A useful technique in determining whether a module is
functionally bound is writing a sentence desci.ibing the
function (purpose) of the module, and then examining the
sentence. The following tests can be made:

I. If the sentence is a compound sentence, contains a
comma, or contains more than one verb, the uodule is
probably performing more than one function, therefore,
it probably has procedural or communicational binding.

2. If the sentence contains words relating to time, such as
"first", "next", "then", "after", "when", "start", etc.,
then the module probably has procedural binding.

3. If the predicate of the sentence doesn't contain a
single specific object following the verb, the module is
probably logically bound. For example, Edit All Data
has logical binding;- Edit Source Statement has
functional binding.

4. - Words such as "initialize', "clean-up", etc. imply
classical binding.



The 1following diagram is a structural diagram of a typical
(and actual) prograa. The purpose of the program (i.e., the

f;, i~.tion of the ",top" :,Ldult is to update a custo:!r file.

Input .to the first module is..a customer record (c.g., number,
name, address, status, and dat. on sales). The custorm r file
coi tains custo. or records. Each cu :.onor record is folloued

by. any number of sale re:cords, containing data on sales to

that particular cus;tome; r. The pro granu ill create a new
customer r(cord or up-date an existing custoro:er record.

.The reader is invited to carefully inspect each t:odule and

determine their strength. Your results can then be compared
with the analysisobn the following page;.

Update
_Custor:)cr

File

Initialize Create Upoi, e Close File

Control :New Ex;ring & Print

Totals & Customer Customer Contiol

Open File Records Records Totals

Create Create Update Sale Print

Null Sale r Basic Rec",'ds r Control

Records Customer Customer , Totals

Record Record

Create Edii Cusitomer

Status Number,
Cod's Name, &

Address



The analysis of this structure follows:

I. Module "Initialize Control Totals and Open File"
represents classical binding.

2. Module "Update Sale Records or Custoner Record" has
: logical binding since it performs a class of logically

related functions (updating records).

3. - Module "Close File and Print Control Totals" has
procedural -. binding since its elements, close file and
print totals, are related only through the procedure of
the program.

4. The other modules appear to have functional binding.
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MOD!. , COUPLI-iG

There are two major measures of modularity. The first,

module strength (binding), described in tLe previous section,

s -a me;u::e of the binding anon the internal eleient:i of a

module T,.e seco'Wd 43asure, coupling, is a measure of the

relationships among modules.

Coilpling is a measure-of the independce of odules. Since

a highly modular, design is achieved b maxiniz: nq the

relaj.tionships among the elements of a module and ninimlzing

the relationships among modules, the scale for coupling is

inverse to the scale for strength. That is, we try to

achi:'ee high strength ard low coupling.

The scale of coupling, from lowest coupling (best) to highest

(worst) , is:

1. data coupling

2. common coupling

3. control coupling

4. external coupling

5. content coupling

As the scale of strength, the coupling scale i-: not linear.

Data coupling is very low, control cou~li:ng and extern.:l

coupling are close to mid-range, and conteiw' coupling is very

high. The placement of co.-non coupling on the sciale varies,

depending on how it is used.

Following the pattern of the previous section, we will define

erch type of coupling, give an example, and explain why it

sits where it is on the scale.

COIITENT COUPLING

Two modules are content coupled if one module makes a direct

reference to the contents of the other module. This occurs

in the following situations:

1. One module modifies a prograi- statement in another

module.

2. One module refers to non-externally declared data in

another module. An example of ",non-e ternally declared

data" is a data elenent in a PL/I module that does not

have the EXTERNAL attribute. Thus, a reference to data

in another module where the sycnb-lic name of the data

was not resolved by , preproc ;sor, such as a linkage

editor, inplies content coupling.



3. Two modules share the same contents. This can occur
when the statements of one module lie physically within
r-nother no'd .le or when two modules physically reside in
one "compilable entity" (e.g., tw'o CSECTS in the same
-"module" in- OS. 1ssembly Languago).

It should be obvious that modules that are content coupld,
are - viery dependent - upon one -another and that a seemingly
innocent change in one module can e..isily cause the bther
.module to malfunction.

In situations one and two above, one module is dependent on
actual displacements within the second module. Hence, almost
any future change to the second module will require a change
in the first module. Also, a significant change in one
module, such as the use of a new algorithm or a change in
data attributes or format, may require an extensive design
change of the entire program.

Although situ.ation.- three does not nec- 3sarily imply
situations one or two, we can show that it sets up a very
good "ambush" to allow the programmer to easily create
situation one or two. Suppose that two modules, READ-FROM-
TERMINAL and WRITE-TO-TERMIJAL, are created and exist in one
"compilable entity." Suppose, also, that they started out
containing two uniq'ue sets of program statements and data.

At a later point in time, while a programmer is modifying the
input/output statements in the two modules, he notices that
most of the input/output statements in the two modules are
identical. In a move to "economize", he removes the
statements from one module and simply branches into the other
module. (He could do this because they vere both in the same
"compilable entity".)

ORIGINAL

Module READ: Module WRITE:

RETURN RETURN

NOW

Module READ: Module WRITE:

RETURN



So far, the two modules still operate correctly, but they are

tightly cuupled. Now, a new progr;:er is asked to change

module WRITE so that it writes some data to an audit trail

b.frt3 it writes to the terminal. l1. -rites a WRITE-LUDIT-

}> 3D moc. and-, upon eYaminilg module IRITE, inserts a

CALL instrt. ion as follo1s:

Module READ: Module WRITE:

GO TO 
CALL WRITE -AUDIT-REC

RETURN

He has now created a bug in the progra , since the execution

of motlule BEAD nov also causes 
an audit record to be written.

EXTERNAL COUPLING

Tuo modules are externally coupled if one module makes a

reference to an externaly-declared synbol in the other

module. For instance, a PL/1 module referencing a symbol

with the EXTERIPi. attribut:, or an asseobly lanruar(e nodule

containing a "V-con", are externally coupled with anothe:

module.

Since ext cwil coupling implies high coupling 
(remember, low

coupling is what we're shooting for), and yet external

coupling is a common p'ogramming 
practice, it's worthwhile to

dig more deeply into this type of coupling.

Consider the following case:

GETCOMM

LINE TERMADDR

READT

GETCOMM is a module whose function is getting tlh, next

co mad f o: a ter~l:inal. In perlorming this fc- ,ction,

GETCOMM calls the module READT, whose function is to read a

line from the ter.1inal. READT requires the addLess of the

terun.na . It g t this via an externally declroed data



element in GETCOHM, called TERNADDR. READT passes the line
back to GETCOMM as an argument called LINE.

Note the arrow extending from in :.de GETCOIM to inside READT.
An arrow of this type is the-notation for externally-declared
references.

So -:far, so good. Now, however, we wish to change this
program. We need to. create a.module called GETDATA, whose
function is to get the next data line (i.e., not a command)
from a terminal..- We recognize that it would be desirable to
use module READT as a subroutine of GETDATA. These are at
least five alterndtive designs, which are (examined below.

1. GETDATA calls READf. Before it ca-lls READT, it modifies
TERMADDR in GETCOMM so that READT has the intended
terminal address.

GETCOMM TERMADDR GETDATA

LINE
ENE

T ERMADDR

'- READT

Note that we have probably created a bug. GETCOMM, as
originally coded, never knew that any other module would
change TERMADDR. Therefore, when GETCOMM ex.,cu'tes after
GETDATA, 'GETCOMM will be using the wrung terminal.

2. If the programmer of GETDATA recognized this problem, he
might put instructions in GETDATA to save the current
value of TERMADDR, set TERMADDR, call READT, and then
restore the original value of TERMADDR. However, if
there is a chance that GETDATA and GETCOMM can execute
"simultaneously" (e.g., in a multiprogramming
environment), then the bug still exists.

3. The programmer of GETDATA might recognize the problem
and decide to modify GETCOMM. He changes GETCOMM so
that is reinitializes TERIADDR each time it calls READT.
This may eliminate the bug, but consider the cost. The
programmer of GETDATA had to modify GETCOMM, a module
which should have been independent of GETDATA.

4. The programmer of GETDATA might anticipate the above
- cases and decide that the easy way out is to code his
own read line function, either within GETDATA or as
another new module. This is unfortunate because he is



reinvceiting the wheel (by not using the existing EADT

module)

5. The progra cer may recogjize that the real problem is

high c.uipling and nay decide to cl(::?n it up. lie makes

- TERiADD:: an - input aDgument to READT instead of an

externally-declared data item.

GETCOMM GETDATA

TERMADDR

LINE /7

TER1MADDR LINE

READT

In the long run, this-alterri,itive i! best, but is also the

most costly, since he had to modify both GETCOiMM and REAUT.

This simple example shows that external coupling has an

adverse effect on program modification, both in terms of cost

and pote :-ial bugs. If GETCOMK and REDT were not externally

coupled' from the beginning (i.e., TERI;:.DDR vas passed as an

argument) , the addition of GETDAT vo. Id have been much

simpler.

A second tyrp of external coupling is a reference to an

externlly--:ined statement within a module, for instance,

when one module branches to an extelrnally-defined statement

within another module. I leave it up to the reader to

convince himself that this is at least as bad as the case of

externally-defin-d data as shown above.

COI:TROL COUPLIIIG

Tuo modules are control coupled if one module passes elements

of control as arguments to the other module. An "element of

control" argument is an arguuent which directly influences

the execution of the called module. Typical elements of

control are function codes, flags, switches, etc.

Contro" coupling is undesirable because the 
two modules are

not very independent. Since the calling module influences

the execution of the called module (and, hence, has some

knou;ledge of the internal processing of the called nodule),

the called module is not a "'black box". An additional side

eff,,ct sometimes occurs with control coupling; many times the

strength of the called module is low (i.e., not functional

binding).



2. Data elements defined on the COMMON statement in FORTRANH

modules.

3. A centrally located "control block" or 
set of control

block: (e.q., as in much of OS).

Commoni coupling cause the following weaknessos in the

module; that ,re--commn. coupled:

1. A modificatipn of only several modules may impact every

nodule that is common coupled to thes modules. For

instance, assume only two modules reference a data

element X in the common environment. We desire to

expn;nd X from two bytes in length to four bytes.

We: make the necessary changes to the the two modules,

but discover, to our dismay, that every nodule that

references the common environment must be recompiled.

In OS, most of the data- elements are contained in system

control blocks. The-se control. blocks are mn:., .:d,

element by element, in mapping macros. Any module which

references a data element must contain 
the mapping macro

of the proper control block. Anyone familiar with the

ongoing development and maintenance 
of OS knows that the

"macro problem" is a very costly problem. Since the

mapping macros are constantly changing, 
and since it is

infeasible to recompile thu :any thousands of modules

whenever a macro changes, the modules always contain

varying versions of the same macro. This has led to

many bugs in oS and also to costly procedures to try to

track and control this situation.

2. A desirable goal is limiting the references in each

module to only those data elements which the module 
is

suppo.ed to reference. With common coupling, this is

inpon. ble, since each module can potentially reference

every data element in the common environment. This

leads to future problems in modification of these

modules. For instance, when modifying a module, the

programmer may decide to add a reference to another data

element in the common environment. This can lead to

bugs in instanccs such as (a) the other modules using

this data element assume that they were the only users

or (b) the programmer uses the data element for other

than its intended purpose. In general, such

modifications cause the data references in the program

or system to become unstructured, uncontrolled, and

often unknown.

Again, we can use OS as an example. OS has an array

called the Communications Vector Table in a well-known

location .ii its memory. Almost every data element in

the system can be located via the CVT. Hence, every

monule in OS is potentially common coupled. This has



led to costly problems in trying to keep track of, and
control, which modules reference which data elements.

3. If a module references a common environment, it's very
difficult to use that module elsewhere in the program or
in aotheLr .program.

Assu me, in a payroll program, we have a module named
CCOMPF [CA. COMPFICA computes an employee' s F.I.C.A.
deduction, using the salary as an input argument, but
obtaining this year's F.I.C.A. rate from the common
environment.. We now desire to modify the payroll
program, adding a function to compute, for the next
year, the week when an employee's F.I.C.A. deductions
will terminate. We'desire to use- COMPFICA with next
year's F.I.C.A., but we face a possible problem, since
if we temporarily modify the F.I.C.A. element in the
common environment, we may cause a problem in some other
part of the program..

The use of a module that references a common environment
in another program (i.e., a program without such a
common environment) is.very difficult. Generally, we
have two alternatives, scraping the idea and writing a
new module or creating a "fake" common environment
before calling the module. The former is costly, since
we are "reinventing th(e wheel." The latter leads to
complex and cumbersome coding.

On the scale of coupling, common coupling usually sits
between data coupling and control coupling. The exact
placement of common coupling on the scale is dependent on its
use. For instance, if control elements are pi.ced in the
common environment, the coupling is closer to control
coupling. In this case, a combination of control and comm.-n
coupling is worse than plain control coupling (e.g., passing
control elements via parameters), so that control/common
coupling is higher (worse) than plain control coupling.

On the other hand, we can see that the disadvantages of
common coupling became less severe if the common environment
is limited to a subset of the modules in a program. Hence,
if coumon coupling cannot be avoided, it is desirable to
limit access to the common environment to a minimal subset of
modules. This tends to lover the overall coupling in the
program. Furthermore, it is desirable to limit access to the
common environment to the "top" modules in the structure,
since this still removes the disadvantages of conmon coupling
from the "lower" modules in the structure (e.g., allowing
them to be used in other programs).

I have discussed common coupling in greater detail because
its use is widespread today. Many people feel that common
coupling leads to "generalized" designs. However, there is
no objective proof of this and the only proof available leads

t,0



:us -to believe th;:t cor.~on coupl.i),g leads to .ungeneralized"

design;. Fortun, ly, the wekness-e of common coupling are

beginning to be re.ognized. For instance, Belady and Lehoan,

in a pap,'r on proogra naintenance and growth[ 1), made the

ft.llowing observ.atio n s :

These concepts reflect 'the accepted viewpoint that a

ell structurel systeO', one ii - -which comnunic; tion i!:

via pa sutd par .et ~ ; through define, intert .,ces, is

likely to be more grot able and require lesso effort to

maintain than one making extensive use of global or

shared variables.

DATA COUPLING -

Two modules are data coupled if one calls the other and they

ren't content, external, control, or counon coupled. Tn

other words, all input and output to and from the called

module is passed - as paraneters or arguments. Also, all of

the parameters are data. elements (i.e., not control

elements).

Data coupling is the lowest degree of coupling. Thus,

modules that are data coupled are 
highly independent.

We can make a very strong statement about data coupling.

Data coupling is a sufficient condition for any program.

That is, an' program can be uritten solely with data

coupling. A proof of this statement is available.r4]

CO:TROL VEE'SW!' DATA, COUPLIN G i

In most cases, it is easy to distinguish between control

coupling and data coupling by examining the paraneters

passeet. Howver, for certain typ::s of paraneters, it is more

difficult to distinguish between control information and data

infermn ion. Several 9,'idelS iies that may assist here are

listed below.

1. The classification of the parameters (control and data)

is dependent upon how the sending odule perceives them,

not how the receiving module perceives them.

A
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If A passes x to B and A perceives x as data, then A and
B are data coupled, even if B executes diffcrently based
on the value of x. If A perceives x as control
information (i.e., A is telling B uhat to do), then A
and B are control coupled.

The same argument applies to infornation returned from
a module, such as return codes or error flags. If B
passes a return code back to A saying "I've failed in
performing my function" (implying that A can do whatever
it wants), then this return code is data. If B passes
a return code saying "I've failed; write error message
XYZ", then A-and B are control coupled because B is
telling A what to do.

2. Control infornation is usually artificially created
information, that is, information over and above the
information being.processed by the program.

Suppose the function of-B is to process a- command. If
A sinply passes a -command to B and B examines the
command to determine how to process it, then A and B are
data coupled. If A passes a command to B and, in
addition, passes a code saying "process this XYZ
command", then A and B are control coupled.

Point two also illustrates another disl ,vantage of control
coupling. Control information is artificially created within
the program and is extraneous. Hlence, control information
increases the complexity of the program because the program
is dealing with extraneous and unnecessary data.



. OTHiER GUIDELINES

The following guidelines have an effect on the modularity of
a program or sys:tem. They are usc.d to guide the designer
dur-ing the design process and also to improve a "first pass"
moddlar design.

Principle of Parr ,i mo*ny_

The Principle of Parsimony [5] (or "stinginess") means "never
do -more than you.have to". It has two parts, simplicity and
minimum commitment.-

Everything else being equal, the sinplest solution, design,
interface, etc. is the best. This statement is very easy to
prove a d remember, yet it is often forgotten. Assume,
everything else being equal, that we have two possible
solutions, a simpler one and a more conplex one. The simpler
one, beinq easier to-understa.nd, has a more positive effect
on the future maintenance and-modification of the prog"am.

The idea of minimu:: commitment is that we should restrict the
solution of a problem to solving no more than the immediate
probl !n at hand. In other words, never design a program,
modulu, interface, etc. to do more than it is required to do.

Many people have some unfounded ideas about designing a
"generalized" program. They feel that generality has to be
achieved via "open-ended" and "extendible" modules and
interfaces, usually via extensive common areas or control
block structur,. In most cases, program designs of this
type display Ic strength and high coupling!

The trap here is that we are poor prophets concerning the
future modi ications of a program. The best step we can take

producijng a general and mo0ifiable program is adhering to
the guidelines of Composite De-ign and forgetting al.out all
the misconc->ptions we may have.

Scope of Effect and Scope of Control

So far, I have encouraged thinking in structural terms, and
discouraged thinking in pr6cedural terus. lowever, life is
not this simple. There are several relationships betveen
structure and procedure worth understanding; one of these is
the scope of effect and the scope of control[i'].



D
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The scoe of ontrol of amodule is that module, plus allhodules that are subordinate to that module. Por example,the scope of control of A is A, U, C, D, and E. The scope ofcontrol of B is [, D, and E. The SCGpe of control of C is C.
The scope of effect of a decision is the set of all moduleswhose e-:ecution is based upon the outcome of the decision.Assume module B contains a decision x. Decision x determineswhether B will call D or E. The scope of effect o)f x is B(because different statements are exrcuted in D depending onthe outcome of x), D, and B. As a second example, assumedecision x in B determines whether B should continue orwhether B should immediately return to A and then have A callC. In this case, the scope of effect of x is A, B, C, D,and E.

The relationship between scope of control, a structural-con :ept, and scope of effect, a procedural concept, shouldbe:

The scope of effect of a decision should be a subset ofthe scope of control of the module containing thedecision.

Examine the first scope of effect example above. The scopeof effect of decision x was B, D, and E. The scope ofcontrol of module B (the module containing x) was B, D, andE. In this case, the rule isn't violated.

33



In. .the second- example, we Slid that the scope of effect of x
was I1 , B, C, D, and E. flowover, the scope of control of B is
stil.l D, D, and E, so the scope of effect is not a subset of
the sc pe of-control, and the rule is violated. Let's take
a closer look at this violation- of the rule and see what it

iuplits.

We previou; ly said that if x was "true", B would continue
processing (e.g., calling D and E). If x was fa. se, B would
return -to A and A would call C. Here's the problem! How
does A know whether -or not to call C?

Assuming that A and B aren't content coupled (e.g., B doesn't
modify A), the common situation is for B to pass the results
of decision x back to A'. A then has to examine the result
and decide whether to-call C. Note that this decision in A
is really a repeat of decision x in B!

We have alreo dy discovered two of the three problems that
occur when the rule is violated. A and B are -now control

coupled, sinte B is passing control information to A. Hence
violations of the rule usually lead to control coupling.
Secondly, viol-ations of the rule result in duplicate
decisioi;s; being made in different modules. Lastly,
violations of the rule weaken the strength of the modules.
We -ran assure that decisio' x is part of the function

per'.-rnred by B. However, we had to repeat the decision in A.
Pe:i.,p:: this decision is not really relevant to the, function
pi;:for:.ed by A. Hence, the strength of A may be lowered.

A technique for eliminating scope' of effect - scope of
contl:ol problems is discus::ed in section eight.

Module Size

Although there are no hard and fast rules for the size of a
module, we can make so:e general statements about size.

You shotuld take a close look at modules with less than_--5
executal, e source statements or more than 100 source
stateme-n.s. Modules with a very small number of statem,.nts
may not perform an entire function, hence, may not have
functional binding. In addition, a system with a large
number of very small modules may spend a di:;proportionate
time in executing intermodule linkages. In so-,e cases, these
very small modules should be eliminated by placing their
statements in the calling modules.

On the other hand, very large modules me.y be probler areas.
Altho:., the numbor of statenents required to perform a
functi.,n varies wid:ly, there's a greater probability wit.) a
large-nodule that the module is actually perf.:rming nore than
one funct-: . A second prol'lem with large m(.duleks is
understandaiility and readability. There is evidence to the
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fact that a group of about 30 statements is the upper limitof what we can master when reading a module listing.[6]

In my experience, the "average" module contains beti'een 10 to
40 high-level language executable statements. Also, there
are- usually a small nuuber of perfectly valid very suallmodUies and large modules. Size should not be taken as afirn:rule, but it should be used as a signal to look for
potential problens.

Recursion

Recursion occurs "-when a module is a subordfinate of itself.
That is, recursion occurs when a module calls itself, or when
a module calls another module, which calls another module,
etc., which calls the original module.

Programmers usually steer clear of recursion because they donot fully understand it. - A-lso, the module -linkage mechanisLIs
of some operating systems and- some programming languages do
not suport recursion.

The use of- recursion in a nodular design should be
encouraged. Recursion tends to eliminate some redundant and
excessive coding. To illustrate this, let's look at a simple
example.

Assume we have the job of writing a module whose function is"write error message to terminal user, or, if this is
unsuccessful, notify system operator." There are twoarguments passed to this module, -the error message and aterminal number.

Let's look at two alternate implementations of m(idule
WRITEMSG. The first alternative is to write the statement,_
that write the message to the terminal, then check for anerror and, if one occurs, write a message to the operator's
terminal.
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MODUL " WRITEMSG (MSG,TNG)

Se up and write msg to terminal

-- 0

IF NO ERROR, RETURN.

ELSE

Set up and write msg to operator's

terminal

RETURN

--------------------------

Looking at this, we may detect some (uplicate coding and

decide, at. the expense of added complexity, to share sorle of

these statements bctuLeen the "tuo halves" of WRITEMSG.

The other. technic e we could use is recursion. If the

messaye can't be itten tcr the indicatcd ter:inal, the

module calls i :lf, passing an error message and the

operator's teLr...: . nurnber as arguments.

MODULE WRITEMS!t (MSG,TNO)

set up a.dl write nig to terminal

IF NO ERROR, OR IF

TNO = SOT!:O, RETURN.

ELSE ::ALL WLITEMSG (EMSG,SOTNO)
RETURN.

The struc------------------tual nottion for---------- this is:

The structual notation for this is:



L MSG
T rNO

WRITEMSG

Predictable Modules

A predictable, or vell behaved, module is one that, when
given the identical inputs, dperates identically each time it
is called. Also, a well behaved module operates
independently of its environment..

The most common violation of the first statement occurs when
a module keeps track of its own state. The best example of
this is a module containing a statement like "IS THIS THE
FIRST TIME I'VE BEEN ENTERED? IF YES, THEN .... " Modules of
this sort are usually unusable in several places in a
program, which violates one of the basic principles of
Composite Design.

Consider a module called "SET -NEXT INPUT TRANSACTTO111".
Assume that this module, on its first execution, r:,;tosts the
operator to mount the required tape. Later, when modifying
the program, we have a need in another part of the program
for this same function (but using a different tape on a
different tape drive). If we were to use this existing
module, we may find our tape drive empty! To make matters
worse, only one of the two tapes will get counted, and this
will depend on ,iho calls this module first! Hence, the only
way out is by spending more money either by writing a new
module or by making this module predictable.

The second case of an unpredictable module is a module that
makes assumptions about its environment, or, in particular,
about its caller. As an example, a module was written to
accept a string of messages as input, format them, and write
them to a terminal. At first glance, this module appeared to
be useful in several parts of the program. However, this
proved to be false because of the inml Aentation of the
module. The programmer writing the module assumed that it
would be called by only one other module. Therefore, before
writing the string of messages, this module wrote an
additional message, stating "ERROR IN FUNCTION XYZ. ERROd
IIESSAGES FOLLOW." Fortunately, this has a happy ending.
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This mistako was -discove; 'd and the e '.ra ness.-ge re oved.
In this case, th c.lli. !. I. l inl::c't- d this nessage into
the string before calling the message module.
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Part III THE DESIGN PROCESS

Parts I and II covered the "what" and "why" of Composite Design.
Armed with part II, you could be relatively successful in leaving
this paper and using the concepts of C!uposite Design. However,
we have not yet really discussed the "ho.," of Composite Design.Part III describes the-process of producing a modular design.

The ;teps in the C-onposite Design (and development) process are:

1. Starting with the problem statement (or functional
specification, external specification) , design thestructure of the entire program or system using one or
more forms of analysis.

2. Review the. completed structural design, trying to
maximize module strength and minimize coupling.

3. Review the design aqain, using the guidelines; of section
six (e.g., parsimony, scope of effect, size, recursion,
predictable behavior)..-

4. Design -the internal procedure (algorithm) of each
module.

5. Repeat steps tio and three.

6. Code the internal procedure of each module.

7. Proceed with the steps of unit (module) testing,
integration, system testing, etc.

Step one is described in section seven. Step three is described
in section eight. Steps four, six, and seven are covered insection nine.
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CO .CPOSITE IALYSIS.

The desiqn process, by definition, is a creative activity.

Con: *i-tLe analsis, a techniq!e for designing modular

pror:urans, does not replace creativicy; it is meant to channel
creativity in the- right direction.

Con:po:;it:e analysis is a rough fornaliz i o n of the design

procc' :s. In this form, it uill probabl.y not strictly apply
to any single design. The designer will hve to adapt it,
massage it, and compromise it to fit the particular problem
he is trying to solve. In addition, two people indeipendently

designing the sai..e program using composite analysis will

probably arrive at two different modular structures.

The basis of conposite an-lysis is that the structure of the

proram sh.uld resemble tl,:- structure of th, problem. Hence,

conmposite anal' sis invol es an analysis of the problem
structure and, in particular, th:e floi: of data through the

problem and the transfor; ations that occur on that data.

Note that in the preceding .para, aph I stressed the word
struct cre. Composite analysis is totally based on structure.
Wh.,. .qsing it, do not think in terms of procedure, time,
sequ,'ice, which event has to happen first, etc. In other
word s, think about uhat t e progra-" hi! to do; do not think
about when the program has to do something.

I will describe the steps of composite analysis and then

illustrate its use in an example. This example will then be
refined in later sections.

Ste. One

The first step is sketching out a rough picture of the

problem. Remember, this sketch should be in functional, not
procedural, terns.

As an example, consider a simple airlines reservation system.
It is driven by input from remote terminals. The major types

of input are requests for information (e.g., seats available,

flights) , sales of tickets, and passenger check-in's. The

rough structure of this problem is shown below:
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Tra clion Rad Flight Upda Updat
ioFiles - Flih es AccountsFlight 

Receivoble

File

Write Ticket Return
& Trim Flight
Data Information

Note that this diagraM is non.-procedural Fopr instance, on
a request for seating i:iformation, onily a feb of the steps
are performed. Also, for a ticket sale, we are not concernedabout whether the ticket is ritten before or after theflight file is updated.

)te To

Identify the external conceptual streams of data. Anexternal stream of data is one that is external to the
ysten. A ..oncpetun. stream oE data is a stream of related

data that is independent of anj physical input-output device.
For instance, we may have several conceptual Strean:; ccring
from one input-output device or one stream coming fromseveral input-output devices,.

A good example here is OS. The input reader program may be
reading from a Physical input device (e.g., card reader).owever, there are two conceptual streas here, the JCLstatements and the "SYSINi (i.e., those records following a

DD * or DD DATA JCL statement). Since several input devicescan be active simultaneously, the JCL stream is coming fromSeveral sources.

In our airlines reservation system, the external conceptual
streams are the input transactions, tickets flightinformation, and load and trim data.

Step Three

Identify the mAJlor external conceptual stream of data (both
input and output) in the problen. Then, Using the diagram of
the problem structure, determine, for this stream, the points'f "highest abstraction.,,
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S'r:. .ssuming that each problem will have a "major" stream
of data. Any- stream of data usually exists in many forms
throughout the problem. For in1 ance, in the airlines
reservation system, the input transaction can exist in the
follo.ing forms:

1. spdken .:ords (from customer to clerk)

2. request typed into -terminal

3. request received--in digital form by compute':

4. request formatted-.into meaningful internal format

The "point of highest ab.traction" for a stream of data is

the point in the problem structure where that data is
farthes:.. removed from its physical input or output fnrm yet
is still recognizable as Deiny that partic-.lar stream of
data. Hence, in the airlines reservation syste', the most
abstract form of the- input s transaction stream might be a
valid: y checked input transaction in the proper internal
formal.

For the major input and output conceptual streams, we
determine their points of highest abstraction. This defines

tuo points on tle problem structure. All information in the

problem structure. be?' een these two point:; is called the
central transfo.- of the problem.

Central
Transform

Most Abstract Most Abstract

Input Data Output Data

At this point, we begin to diagran the pro2qram structure.
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B C D

IN OUT

1 Usually Most Abstract
Nothing Input Data

Most Abstract Most Abstract
2 Inpjt Data Output Data

3 Most Abstract Usuul ly
Output Data Nothing

The parameters passed are dependent on the problem, but the
general pattern is shoun above.

Step_Fouri

The next step is to define the functions of the four modules
developed in step three. Step four is the most important
step in the process, since proper definition of those four
modules is vital.

The function of each module should be described in a :;hort,
concise, and specific phrase. Remember, the function of amodule is a description of the transformations that occurwhen that module is called. It does not necessarily describethe processing contained wholely within that particular
module. With compsite analysis, our objective is to definemodules which have functional binding. In order to review
some of the do's and don't's, it would be wor'hwhile toreread the section on module strength.

When module A is called, the program or system executes.Hence, the function of module A is equivalent to the problembeing solved. If the problem is "write a FOd;TRAI compiler",then the function of codule A is "compile FORTRAN program".

Referring to the diagram, we see that module B's output isthe most abstract input data. H:!nce, module B should bedefined as a functionally bound module whose functioninvolves obtaining the major stream of data. An example ofa ,typical module 8" is "get next valid source statement in
Polish form." Becua.;e module B's function involves obtaining
data, we refer to it as a source type module.
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interfaces, or similar function) can be found, modify
the modtjlcs to take advantage of higher fan-in to a
common mu:dule.

5. When analyzing a subproblem, the source - transform -
sin!- breakdown is more complex. The reason is that the

--major conceptua'l-data stream of the subproblem normally
enters or leaves through the module we are analyzing.
For instance-if we're analyzing a source type module,
the conceptual stream in thi s subproblem' u:ially exits
via this module (i.e., when it returns to its caller).
Hence, this source type module may actually appear to be
a sink type module with respect to this subproblem. The
same applies to the analysis of a sink type module. A
transform type module may act as both the source and
sink with respect to its own subproblem.

This leads us to the following three guidelines.

6. The subordinates of a sour "e type module are usually one
or more soirce type modulbhs and a transform type module.
Occasionally, a source type module will have a sink type
module as a subordinate.

7. The subordinates of a sink type module are usually one
or nore sink type modules and :a transform type module.
Only rarely does a sink type module have a source type
module as a subordinate.

8. The subordinates of a transform type module are usually
transform type modules. Also, some transform type
modules will have sink and/or source type modules as
subordinates.

Step five is an :-rative process. Yet, obviously, theprocess must eve .tuaily terminate.

There are no explicit criteria for stopping the composite
analysis process. In practice, I've found that is "comes
naturally". Ilhen none of the modules in the structure can be
analyzed further into independent functional subordinate
modules, then the composite analysis is complete.

An Exam le

To better understand the use of composite analysis, we will
use it in an example. Assume we have to design a program
solving the following problem:-

Design a patient monitoring program for a hospital.
Each patient is monitored by an analog device whichmeasures factors such as pulse, tenperature, blood
pressure, and skin resistance. The program should read
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these factors on a periodic basic (sp'cificd for each
pa t, -t). T;e prograr stores these fact- -s in a data
bas;e. For each patient, s:ife ranges for .aci, factor are
specJ i(i (c.g., patient X's valid temnp(.:ature range is
98 to 99.5 degrees). If a -factor falls outside of a
15atient' s safe r.ange, or if an analog device fails, the
nurse's station is notified.

In .a real-life case, the_problem stateent V.ould contain much
more detail. However, this one is of sufficient detail to
allou us to desin the structure of the prog.. .

The first step is to outline the structure of the problem.
This is shown belou.

Fin:! Unsafe
Read Factors Store Factors Notify Nurse

In step two, we identify the, external cc'ceptual streams of
data. In this case, two streams are present, factors from
the arnalog device and warnings to the nurse. These also
repre.ent the major input and output streams.

The point of highest abstraction of the input strear; is the
point at which a patient's factors are in a form to store in
the data ba se. The point of highest abst raction of the
output stream is a list of unsafe factors (if any).

Read Factor s Store Factors Find Unsafe Notify Nurse
Factors

Most Abstract Central Most Abstract
Input Data Transform Output Data

We can now begin to design the program's structure.
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Porlin,t "

I' Find . I Jrildy

I I ,w t I ii

IN ()UlT

I Nolhing IEMP, PUISF, BP,
SKINR, PATIEININUM

2 TEMP, PUtSE, RP, Us' of UJnnfe Factor
SKINR, PATIENTNUM I'hmes iond Volues

PATIENTNUM and LiSt

3 'of Unolfe Factor Nomes HJot hnq
and Values

We will now analyze module "OBTAIN A PATIENT'S FACTORS".
From -the problem statement, we can deduce that this function
has three parts:

1. determine which patient to monitor next (based on their
specified periodic intervals)

2. read the analog device

3. record the factors in the data base

Hence, we arrive at:
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O!,t,;n a

S 0Punt 's Source

4 5 6

find N "x Read Valid Store
P'" '"- to Set o ractor i;

-Mon~itar fac ta: Data acto

1rumIfm) Source Sink

IN OUT

4 Nothing PATIENTNUM

TEMP, PULM., BP,5 PATIENTNUM T ,L
SKINR, NOTVAL

PATIENTNUi.., IIMP,
6 PULSE, BP, SKINR

Note that we have created trat-sfo -i, source, and sink type
modulos, respectiv(ly. NOTVAL is set if a valid set of
factors wasn't av,.,ilable.

Further analysis of "READ VALID SET' OF FACTORS" and its
subordinates yi(:lds:

;end Val':
S4t of
rac tors

7 8

.. -IN OUT
Convert Read
Patcnt No Factors from PATIENTNUM BEDNU
to Bed Term;na PAINNU DNU

A ddri % 8 BEDNUM TEMP, PUlSE, BP,
Tronlsfon Source S ,: INR, tjOTVAL

9 BEDNUM Nothing

Statoon
of Bad 10 LINE Nolhinq
Termi;nul

Sink 10

Write

Line to
Station

Sink

The dianond (d, cision) symbol indicn,.es that the module is
conditionally executed. That is, th, nurses' station is
notified only if the read fror. the analog device was
unsucce-:sf ul.
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tloving to another part of the structure, we analyze module"F.IND UNSAFE -FACTORS,, to a-rive at:

Find
Unsafe
Factors

IN OUT
-Obtoin --.-_

Pato;cnt's Dtermine 11 PATIENTNUM TE PR, PULSER,
Safe if Factor BPR, SKINPR
Ranges is Unsafe 12 FACTOR, RANGE UNSAFE
Source Transform

We now analyze that last part of the structure:

Notify

of Unsafe
Factors

S13 14
IN OU

Format Wr e 13 List of Unsafe FactorOuput ne o Names Values List of Lines

a 14 LINE Nothing
Transform Sink

The following sets of data are required in the program.These sets of data could either be passed down as parametersfrom module MO1IITOR PA''IENTS or else be read from files.

I. list of patient Iucers and their monitor time intervals
2. map of patient numbers to bed nunbers

3. list of patient numbers and their safe ranges
The composite analysis of this program is now complete. Thecomplete structure of the program is illustrated on the nextpage. Note that the design isn't complete yet. Severalsmall flaws will be corrected in the next section.
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. I 2. '; 3

Obtain a Ptient Find Uns:fe Notify Sta ,n 
sof

Factors Factors 
Uc-,e Fac;::r;

45 11 12 13
Find Next Patient Read Valid Set Sto.: Factors in Obtain Patient's Determine if Format Outputto onitor of Factors Data Base Sfe Ranges Factor is Unsafe Lir.es

7 8

Convert Pat ert Read Factors from
No. to Bed Address Termina

Notify Sta,;on of
'cd Te m -I

10 I
V.'-;te Line to
Slcion

IN OUT

TEMP, PULSE, BP, SKINR, PATIENTNUM
2 TEMP, PULSE, BP, SKINR, PATIENTNUM List of Un'sacf F"ctor Names & Values
3 ; TENTNU-M & List of Unsafe Factor Names & Values

4 PATIENTNUM
5 PATIENTNUM TE MP, PULSE, BP, SKINR, NOTVA
6 PATITNTNUM, TEMP, PULSE, BP, SKINR
7 PATIENTNUM BEDNUM
8 .EDIUMA TEMP, PULSE, BP, SKINR, NOTVAL
9 SEDNUM

10, 14 LINE
11 PATiENTNUM TEMPR, PULSER, BFR, SK! iRR
12 FACTOR, RANGE UNSAFE
13 List of Unsafe Factor Names & Values List of Lines



8. DECISION ANALYSIS

According to the overviev in the introduction to part III,
the ste ps following the analysis of the problem statement
are:

2. Je.view the -conpleted structural design, trying to
waximize module stLingth and minimize coupling.

3. Review the design again, using the guidelines of section
six.

These steps should be fairly straightforward, providing thatyou understand the. concepts of part II. However, we willdiscuss one part of step three in more detail. That is,assuming you have discovered a scope of effect - scope ofcontrol problem, hou do you solve it?

To review, the scope of control of a module is the set ofmodules consisting of that module and -all subordinate
modules. The scope of effect odf a decision is the set ofmodules whose execution is. based., on the results of that
decision. We said that the -scope of effect should be asuhset of, or egqual to, the scope of control and, if this isnot the case, w e have duplicate decisions among modules and
lower module stiength.

The. cure for scope of effect problems is to redesign thataffected part of the structure, either by moving the decision
element "up" in the structui-e to where the scope of effect isno longer greater than the scope of control, or by takingthose modules that are in the scope of effect but not in thescope of control and moving them so that they fall within the
scope of control.

To illustrate this, let's look .at part of our patient
monitoring program:



Oiatn a
Potient's Foctors

W. l I of Fat,° Dula Bos
X X

Convert Potion t Ret Fochi . from

No. to &d Terminal

Address X

.!.iy $,..:on of

Bod lormiil

Note that module "READ FACTORS FROM TERtMIIAL" contains a

decision asking "did we successfully read irou the ternin,:l?"

If the read wasn t successful, we have to no'ify the nurse's

stati.n and then ' nd the next patient to process;.

Modules in the scope of effect of this decision are marked

with an X. Notc that the scope of effect is not a subset of

the scope of control. To correct this problem, wu have to

take two steps. First, we will nove the decisic up to "RI,-D

VALID SET OF FACT '; ." We do this by mergijr.g ,E',UAD FACTO IS

FROM TERMINAL" into its callirig module. We nou mak "FIND

NEIT PATIEi' TO IO1ITOR" a subor~.inate of "READ VALID SET OF

FACTORS." Hence, ve have:
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C vlin a
Panlont'l Factor,

oSo NF ",ct..

Find N xtl Convrt PotIent ]N tiIy Stlion
Pl;ient to Io. to Bed of Bad Term;nol
M ,nitor Address

X x x

Hlence, by slightly altering the-structure and the function of
a- few modules, ve have coupletely eliminated the problem.

There are tinms -;hen complete].y eliminating a scope of effect
problem is infeasible or undesirable. In these cases, we try
to minimi2e the problem, that is, einimize the difference
bhel~een the scope of effe.:t and control.

For instance, this: is better than this:,

X

o x o
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9. THE DEVELOPMENT PROCESS

After the structural design is complete, the next steps in
the developnmeno of the program are the internal logic design
of !,ach module, a second review of the struc tural de, i gn ,
coding, and then testing. Although Composite Design i.s a
dle:! ! techiiology-, a few obs rvations about the (devl ( eia 1n t
process (design, coding, and testing of ea::h module) can lhe

mad .e-.

The most important consideration in program development is
the requirement fur a strategy and discipline. Almost any
stategy or discipline is better th.. n none at all (i.e.,
developing modules'at random).

A second important consideration -is that the design
(structural and in t-ra-module) should be completed before
coding is started. Because the des.i.gn proces: is an
ite;ative process, coding should not start until the last
design iteration has occurred. Because design is the most
crucial and important phase of the project cycle, the design
ti,m:.: s-hould be lengthened and the coding time should e
shortened.

Two development strategies that have evolved, "top-down
devel, pent"[ 3] and "bottom-up development", warrant
consideration.

To2-Down Development

In top-down development, coding is performed "top-dovn, in

execution sequence". That is, the module at the top of the

structure is codr:d first. Then, modules subo dinate to this

modul,- are coded, this collection of r-ndules is test ed

toget, er, the next level is co, Wd, and so o . However, the
segu.:.uce is not quite thi : simple, as shown below.

L A

B C

D E



H odul.e A is coded first. In oLder to test module A, modulesB and C are ne,.ded (or else 1"durnyl modules to sinulate 8 andC)-. ilowevor, to test !ith B and C, an ai:d nc lded. ThisPures;ts; u:; vith a di or:ama bec.use it azpo)ars 'hat the wholeIoj grin mi :;t b coded before :ny part of it is tested. Thisdi l!IILl i :; o I vd by dlv loping tVo;-do t;1 in exeo cut ion5 1i a . Modlo:;w A ai-d I ar e coded first (assun ing A call.s1 bLoLr: it calls C). Then A aad B are partially te..-ted (thepart of A up to the call of C and -the -part of D up to thecall-. of D) . Then D is coded and the combination A, B, and Dis partially tested]. Then E is coded, A, B, D and E aretested, then C is coded, etc.

Note the following.:

I. The complete testing of most modules is spread out overa long time p-eriod. For instance, A might not be-conpletely tested until everything else is available.
2. The complete testing of the modules is not "top-down".

For instance, D mi'Jht. be completely tested before A iscompletely tested.

3. The planning and control job can be -complicated. Forinstance, knowledge of the execution of the program isneccssary to deternine the order in which modules arecoded. Also, we have to keep track of how much of eachmodule has been tested.

One definite advantage of top-down development is theresolu ion of module interfaces. If we code A before we codeB, the para.eoters passed to B ar:e well defined before we codeB. If we code B before we code A, we may have to ikeassumptions about the parameters pdssed to B. In ail c ka:es,this is a real advantage of top-down de,,:lopment. [Ioueveo,the magnitude of the advantage is based on the quality of ouroriginal design. If the original design was good (e.g.,interfaces we:e well defined), the coder .1.1 have to make asnall number of assumptions conce[r'ing the interface.

A second advantage of top-down development is in the testingof modules. If we code and test B before A is coded, we may -have to write a "dummy" nodule to call B in order to test B.Ho wev, r , depending on the testing environment and the natureof nodule B, this may not be a real advani ge.

1. If an automated testing facility is used such as OS/VS2TSO TEST or Vt/370 CMS, the "dunmay" module isunnecessary. These facilities allo us to describe theinput parameters to module B and then execute B.
2. lodule B may contain conditions that we wish to test, .ich are very di cficult to ii.voke through -'•ile A.Sippose module B contains code for l"unlikely to occur"situations, such as validity checking the paraneters



passed to it. If A aluays passes valid parameters, we
cannot test this validity check in module . in a top-
down fashion (e.g., ; . may sill hav(- to write a duc r:y
driver to call module B, pas:;ing invalid parameters)

13ot '-f p Dlevel,. "ent

Like- top-down development, bottom-up development involves a
structured overlap of *coding, "ito ration, and testing. To
illustrate thi:., consider the following example.

8c -- D

E F GH I

IN OUT

2

* * o

We start by developing the lowest modules (e.g., module J).
Once J is developed and tested, we have extended the power of
our "pseudo machine". That is, CALL J (x,y) is now in the
statement repertoire, along with the stan 1 ard statem nrits such
as A=B+C. Hencie, we could now develop module F l:ith the
knovledge that CALL J is a working statement. To test F, we
include the tested module J. We continue this integrating
and testing process until we reach the top.

To illustrate this better, the following page contains a PERT
chart shovir.rj the bottom-up iuplemiintation of the a'ove
pr og ram.
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Note. tlhat th i,; proc;ss almost oliinato: the' t L i tiona l unit
to_.;t pl oce;:;. A unit test is a test of a :;inIJle modulo, in an
in;oltod nviron int ow tevC' , in this pLoc0s:;, the only
modules t h.lt -are st;:ictly unit tested are the modules with no
subordii at es. Modules that have subordinates are not tested
alone; they are tested with their subordinates.

In the previous example, module J bas tested by itself (unit
test ig), llowover , modlule F was not tested by itself; it was
tested by combining it with previously tested module J.

In addition, bottom-up development allots us to perform at
large number of indep. ndent activities in parallel (refer to
the PERT chart).

Whic, is Better?

You have probably noticed that I am somewhat biased toward
bottom-up development.- To review, the advantages of top-down
development are a reduction in the assumptions made about
interfaces and a potential reduction in the amount of "dummy
drivcr" code uw iten for testing. The advantages of bottom-
up d,. elopatent ar(' ease in . lilanning a!(d controlling the
codi ng and ttin.( proc .es., co l et( testilng of every
module at a single time, and the po:tential for performing a
greater number of development activities in pArallel.

Perhaps - the conclusive ar'ument can be dotermined by the
pre:.;ence of design changes to the program du i.ng its
development. Since design changes are more expensive and
usually more sloppy in parts of the program that are already
coded, we should try to delay the coding of those paris of
the program that are most susceptible to design changes. If
the "bottom" levels of the program are most susceptible to
design change, thn top-down developl:ent may be advantdaeous.
If we suspect the: the "top" levels are most susceptible to
change, then bottom-up development may be the answer.

The arguments for and against* top-down development and
bottom-up d(evelopcnt aren't convincing. EithLr one can be
used to develop a program designed with Couposit(e Deign.
However, it is important to choose one or another and to
stick with it.

Different programs have different susceptibilities to design
change. For instance, we can point to a particular program
and estimate that the majority of the design changes will
probably occur in the modules toward the bottom of the
structure. Unfortunately, I known of no general
classifications that can be made to determine whether a
progran is more susceptible to change at the top or at the
bottom. Perhaps until more research is done, the following
guideline can be used:
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If you ost'inate that design ch nes durin:: the
development of your program will primarily occur inmodules toward the botto of the structure, use top-dou;n
developnment. If you estimate that they will occurtoward the to2 of the strwature, use botto- i p
developnent.
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Part IV HELATED TOP :CS

Pirt V ' discur;ses; several other aspects of Comlpoit.e Design.
Sec-tion ten di.:cus;e!s the managel-ment of a prog tirmm: ing pro ject
incorL:oratJig Composit Design. Section eleven relates Composite

DeLi. ;; to the virtual storage environment and discusses the
phy;.ical p ,ckaging of -mc. ules in a paging e:nvironment.

Section twelve suggests- several de:irable..attributes of tuture

compul r-, sy!stem (hardware and software) architecture to enhance
the use of Co.,posite Design. Section thirteen suggests some
docume.ntation standards to be used in des..ribing the output of
the structural design phase.
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10. Project Management

Two of the biggest problems faced by programming pro-jcct
managers are a) resource imbal ances, because programning
resources (e.g., progra n ) cannot ea,sily be ishifted a; ,und
to match the current uorklo-d and b) inability to measure the
proqg,-,s: of a project due to the lack of :mall measucable
ur1its. Composit'e-Design ca'n assist in the solution of theseproblens.

In a paper by Rhodes[7] the author states that the ideal"work unit" in a programming project should have the
following characteristics:

fiiite logical function

defined start and end points

parameterization

fully t 'stable

robust

small

We ;ee that the "module" from our Composite Design concepts
meets these criteria.

The output of a Composite Design activity is a structural
diagrim indicating the relationships among all modules, thefunction of each module, and definitions of all interfaces.
If the design is good, the uodules are robust (high strength)
and very independent (low coupling). Because of thesecharacteristics, progranmmer assignmer.ts can be easilyshifted. Hence, we can shift programmers from module t,,module to smooth out the peaks and valleys in resourcerequiremoents. This gives ns more flexibility in allocatingmanpower to ieet changing onditions.

The fact that a modular program consists of many :mall
modules also enhances this "snoothing'" capa h. lity.Furthermore, since we start with a large ntli:ber of s:m,: :ork
units (modules) , more precise planning of prog,. mnerworkloads is possible.

The second problem I mentioned was our inability toaccurately measure the progress of a project. This problem
is usually caused by too few point: of measurement andambiguously defined points of measurement. Envision aprogram consisting of one lhrg; :.:odule. Checkpoints such as50 percent code written or 50 percent test cases successfulare usually mianingless. First, their meanings arein tr.-eted differen tly by different people. Secondly,
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they're mi <1 (.ding , since:. 50 percr nt code v r i tten does not
imply that the codi in effort is half coiplete.

The answer to this problem is measuring progress based on a
number (-f smaller activities (e.g., implementation of modules
in a modular program).

By using one of tho development processes suggested in
section nin,, we see that the development schedules and
assignments ,an b- di rectly related to the structure of the
program (se the PERT chart in section nine). Hence, the
structural diagram-prLoduced by the system designers using
C6mposite Design.. gives the project manager a basic
developm-ent plant

Estimating

Another problem facing project mana'ers is arriving at good
estimates of the resources required. A modular program
design m akes; estimating .easier because it is easier to
predict the size of each module or to predict an "average"
module size (see reference 8)-.

New ProqrrinisjS tep

When Composite Design is to be used on a project, its use
should be explicitly recognized by creating a step in the
programming process for it. Hence, a step called stzuctural
design should be identified in the project plan. It should
follow exter -L:1 specification design and precede the logic
design of each. individual module. Documentation produced by
this step is discussed in section 13.

Other H'ints

Once a good nodular design for a program has been developed,
it would be unfortunate to degrade this design when the
program is modified in the future. The project manager
should in:;ure that all future modifications to the program
adhere to the principles of Composite Design.

Th- same applies to program maintenance. When a hug is
found, there is: a temptation to find a "quick and dirty" fix.
This temptation should be fought, since a "quick and dirty"
fix may fix the currcenit problem, but it may also degrade the
design of the program, resulting in higher future maintenance
and modification costs.

By following one of the development processes described in
section nine, we see that the implementation plan (internal
module design, coding, and testing) can be directly derived
from the structural design. By constructing a PERT diagr..a
froLl: the structural design, we have the ba::;ic implementation
plan. Bu matching the PERT chart with the resources (e.g.,
programmers) avaialble, individual programmer assignments and
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schedules -can be derived. Note that specific individualass-ignnents for thile iplementati, phase c.!;:)oct (and shouldnot) be uade until the modular design is coLup.1ete.



11. tlodularity and Virtual Storago.

The'concept of virtual storage is heralded as a mechanism to
make the ;rogr inmer' s job asi er, since it le:ssens the
programmer's proh -ms of designing for a particular memory
size, pack,.ginq programs into overlays, etc. These claims
are - certainl y .valid. However, to insure adequate:
perfotimance, the programmer must now worry about the effects
of paging on hi:; plograqLm.

Performance in a paging environment is inversely related to
the i numb r of pa4e faults incurred. A page tault is the
interruption that occurs wh(-en a reference is made to a page
which is not currently in real memory. Hence, the
performance minded programmer should attempt to find an

optimal packaging of hiS program and- data, that is, a
packaging which minimizes the number of page faults.
Experiments in this area have shown that pr per packaging h-as
resulted in a. five-to-one reduction in the number of page
faults.

Throughout this paper, I havre repeatedly warned against
thinking about the rocedural' aspects of the program. This
warning must be dropped for this section, because packaging
of a program in a paging environment is entirely a procedural
problem. That is, it is based on the execution
characteristics of the program.

To package a program in a paging environment, we need the
following information:

1. the size of a page (I'm assFuming the system has a single
fixed page size).

2. the size of each of the modules in the program.

3. a structural diagram of the prograM.

4. some knowledge of tl:e procedural as;.ects of the program,
in particular, the "when" and "why" behind the calls to
each module.

The process we are discussing involves the proper physical
placement of modules among pages within the virtual storage
to minimize page faults. Since packaging i:; a procedural

problem, and since it requires the output of the design
pha;se, packaging cannot, and should not, be considered during
the design phase. Because it requires knowledge of each
module's physical size, packaging cannot normally be
considered until after the coding .phase.

Packaging is primarily an art. I will list several
prioritized guidelines for packaging and then illustr:ate
their use in an example.
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Priority On - Iterations

Group tog 'ther modules whic call one another interatively.
For instance, if module A iteratively calls nodule B, then A
and 13shouLd be grouped together.

A

Probability- of execution i-s -another factor. I-f A repeatedlycalls B and. C, and it repeatedly calls B every time A is
entered but repeatedly calls C only sometimes, then A grouped
with B is cf top priority, and A grouped with C is of lesser
priority.

B

PriorityTT - Hi h _Fan-in

Groui:s of mc(dules with a high fan-in (number of calling
modulres) thzat are called by the same set of modules should begroup.-d to-ether. For instance, if A and B are called by a
set of modules (C, D, and E), then A and B should be grouped
together.



A B

Priorit Three - Freouenc'

Group together those modules which call one another most

frequently. For instance, in the following diagram, A calls

B every time A is executed, A.calls C about fifty_percent of

the time, and A calls D very infrequently.

A

Our first concern should be to group A and B together.
Groupir ! A and C (and B) together is of lesser importance,
but de. irable if possible. We probably should avoid grouping
A and D together.

Priority Pour- Execution 'equen°'e

If the above three priorities have been exhausted and space
still exists within the pages to add additional modules,
execution sequence should be the next consideration. That
is, modules which will execute sequentially should be grouped
together as much as possible.



F
C ider the above diagram and, for this example, assue the.cution sequence is:

A. B F. B G-B AC A D A E-H E I EA

-sume that we can fit a. y five of these modules on one pageand the other four on a second page.

By scanning the execution seq ence and picking any sequencerf fi~e unliquo names, we have the opti.um solution. Forr, crce, if we pick the first five unique names in the, we have A, B, F, G, and C in the first page and D,H -, , and I in the second page. This yields four page faultsSthe execution (two in the call of D from A and the returntu A and two in the call of E from A and the return to A).
io fact, oe can pick any five modules together in thes.uence. For instance, starting at position four, we couldpick B, G, A, C, and D for one page, which still yields fourC;.,ge faults.

Sue do this wihout considering the execution sequence, theaged faults are greater. For instance, putting A, B, C, F,an, V in one page yields eight page faults. Putting A, B, C,D, and ' in one page also yields eight page faults.
;:: when the e::: cution sequence cannot be determined (e.g.,dic4sions in the modules alter it), this technique can beuei by determining the mo-st 22robahle execution sequence.

!-Gr -o i _ _ ri eria

In addition ro the above prioritized guid'-lines f or groupingmoe.les on pages, there are several cases where Ve cane:nti-y tj:,:ule:z that shoul n't he grouped together. !ot; c u ping modules of this sort together will allow us sorefredon to make additional desirable groupings.



A uy module that i.; orinly execut.ed once . shon d be :;eprated
fr.o', tl, oth,,r modules. Also, any modules; that puovide
inf,- ": ,nt ly used optional functions shok.ld be sepa.rated from
the o,.,:r imodules.

Ex ample

The diagram on the next page will be used as an example. The
module sizes are indicated in the low er right hand corners of
each module. Assume, -in this sy:stem, that the page size is
1000 bytes.

The first step is to find priority one groupings. Examining
the iterations, we *rrive at the following three groups:

(B, D, E, F, G; H) (D, L) (C, I, J-, K)

The next step is to find p'-iority two groups. Modules R, 5,
T, and U meet the criteria, since they are cu.lled by a common
set of modiles. Hence, the. single priority two group is (R,
S,. T, U).

Priority three groups are now developed. Making a few
assumption s about the program, we determine that there are
two groups of high frequency calls. They are (R, S, T, U, N,
0, P) and (P, J)

The fourth prio.ity is execution sequence. Rath r than
determine this *..:, we will o-.it it and come back to it later
only if the first three priorities are insufficient.

Looking at the first priority one group, (B, D, E, F, G, H),
we shoI'. start by packagi.ng these modules together.
However, their combined size is 1250 bytes. We h,,ve to omit
something sn we pltoce B, D, E, F, and if (750 bytes) on page
I and G on page 2. The next group is (D, L). Since D is on
page 1, we can include L on page 1 for a total of 800 bytes
on page 1.

The next priority one group is (C, I, J, K). Since they
ca nnot fit on pages 1 or 2, we put them on page 3 (coibined
size of 700 bytes).

The only priority two group is (R, S, T, U). Since this
cannot fit on th.: first three pages., we place i. on page 4
(now 600 bytes).

There are three priority three groups, (R, S, T, U, N, 0, P)
and (P, J). The first group has; a size of 1650, so it can't
be placed intact on page 4. Since the other group also
contains P, we'll put P and J on a new page, page 5. The (R,
S, T, U, N, 0) group is still too large (1200 bytes) so we
must -remove N or 0. If we remove 0 and put it on page 5,
page 4 nov contains 900 bytes and page 5 contains 950 bytes.
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.The tvo remaininJg modules are M and 0. Page 2 currentl y

:contains modt(le G, and Q and M are connected to G by
execution sequence, so we put M and Q in page 2.

,The packaging is:

-R a si Mo u( .n

1 , D, E, F, H, L

;2 G, M, Q

3 C, I, K, J

4 R, S, T, U, N

5 0, P, J

Experimentation

Now tha' we have d ete-rmined a -way of packaging a particular
program, further oiptimization is probbly worthwhile. The
following procedure is suggested:

i. Pick one or more "most probable" executions of the
program.

.2. For these cases, write down the execution sequences by
moduic'.

3. Make an assumption about the number of page frames in
real storage available to the program. That is, assume
the program will always tave X pages in r al stor;ge.

?Q. Walk each of the execution sequeci:es from step two
through the m .dules. On paper (and in your mind),
perform the paging and ci unt the number of page faults.
You can either use the paging strategy of the sys;tem
that this prot; -m will execute on or assume a p~ging
strategy (e.g., demand paging with replacement of the
"least recently used" page).

'5. -Now, make a change to the packaging. For instance, if-
.there were some arbitrary decisions made in the original
.packaging, you can change these( decisions. Repeat step
four and compare the results (number of page faults).

It .should be obvious that this section has described an art,
inot an exact science. For a more sohpisticated technique
involving the examination of the re:Crence p,:tterns of a
.program, see the paper by Hatfield and Gerald. [9 ]
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12. Agreeable Hardware and Soft ar:

In today's- environment, t;here are obstaci es to modular
programs. These obstacles a o in te form of CPU
architecture and softuare design (operating systems and
programming languages)

Th e- linkage di tor is one of the biggest enemies of
modularity. Eost operating systems have a progI:am called a
linkage editor.- The linkage editor combines a group of
modules into a single-named entity called the load module.
Hence, the linkage editor is a "demodularizer."

Once a module is link edited within a load module, the module
loses its identify outside of the load nodule. Hence, if
module A is in load module M, then we cannot call module A
from a module that is outside of M. This restricts one of
the basic concepts of Composite Design -- that a mc,! ule
should be accessible and usable by a larqe number of other
modules.

The linkage editor should be eliminated, or, if it is used,
we should have only one module per load module. A-li linkages
between nodules must be dy-namic (e.g., LINK facility in OS).
Tie host operating system must provide a fast dynamic linkage
facility.

Another function of the linkage editor is to resolve external
sy nbol references among modules (external coup. ilig). If we
ij. iinate the linkage editor, we also lessen the problem of

external coupling (i.e., the programmer is forced to use
another, hopefully better, form of coupling)

The opera ti rig system and programming languages must nforce
a high degree cf data isolation among modules. This; includes
such things as allowing no module to modify another modul-
and making names defined within one module local to that
module. Mos.;t programming languages do fairly well here but
APL is an exception. API, has a weakness in that names in a
module (function) are global unless explicitly declared as
local. Hence, APL p:omotes common coupling.

Standard linkage conventions must be followed for all-
language processors to allow ,odules written in different
languages to call one another.

Recursive modules must be supported.

Operating systems and programming languages must further
isolate modules by restricting a module's external reference
to only those items explicit-ly declared as input and output.
For instance, most language-; give too mu,:h freedom to Tnodu:les
in dealing with their arguments. In the follouing s.:quence

CALL M (A, B, C)
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modIulr M car modify A, B, and C, even if A and lB are in tended
only as inp u ts and C is the only intended output.
PrOgrmming langu-ges should support the followinJg:

CALL M IN (A,H) OUT (C)

Opera..ing system; mu st provide the necessary storage
prot6ction for this, t1-at is, so that the only ext(-'nal data
module: L. can, read re A and B and the only external data
module M c n modif? is. C.

An argument that .- is sometimes valid is one concerning
efficiency. If intermodule transfers are slow, then a high
degree of modularity-may result in a large amount of overhead
in j, ust transferring from module to mod ule. The four
eleme .:s of a module call 'are:

I. transmission of aLguments

2. tran;mission of the return address

3. saving of the calling -module's state (e.g. general
registers)

4. allocating of private storage for local variables

In OS, a dynamic module linkage betwee:. two reentrant modules
takes the following steps:

1. an address vector of the arguments is built in a

temporary storage area.

2. CALL is is:: . For molules in the same load module, a
direct brancih is usc : . For other cases, the LINK
function is used.

3. The general registers are saved in a temporary storage
area.

4. A temporary storage area is obtained (via the GETMAIN
function) for local stoLage and save areas.

of these, step four causes the most overhead. Storage must
be allocated during every CALL and freed during every return.
The GETHAIN and FREEiAIN functions involve a significant
number of machiine instructions, in fact, normally more than
the instructions executed in the module itself! Operating
systems must improve significantly in this area in order to
better support modular programs.

A second area requiring further imporvements is step two, the
LINK facility.

Possibly the best answer to improving module linkacge is
hardware assisted linkage. If increased program modularity
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3. Documntation

Th. output of the structural design phase should be a) a.
de:~cripti of the structure of the proc;ram (i.e., who calls:-.
who), b) a description of the inter-module interaces, and c)a des.;ripti:. o each module -(i.e.., its inputs, outputs,
natze,- and function). Earlier sections sufficiently descrj )ieda and!- b, and appendli A defines the notation. This section
discusses point C, a description of each module.

This section will not discuss the various techniques (natural
language, specification language, grapi cal, etc.) that can
be' used to describe a module. Inst,:.,d, it discusses the
types of informatiol, that should be contained in the
specification.

A module should have -two types of specifications, an external
module speci i cation which describes o. !y that information
needed by a L,:,dule that calls this module, and an internalvmodurle spci'-ici;tion which describes the internal logic
(operation) of the module. It is important to- distinguish
between, and physi cally se i rate, the.-e two specIfications
be cau.se the intern-C specification can be altered without
affecting the calling module but changes to the external
specification usually requiLe changes to the calling module.

The internal module spccification is written during theimplement tion (developmcnt) phase. The external mod ule
specifica ion is writte: earlier, near the end of the
structural design phase. In this; section, we will only
discuss the external module si:ecification.

Th extern .n- module specif: cation should describe all the
information needed by the calling module, and nothing more.
Hence, this specification should describe the module's name,
inputs, outputs, and function.

Mlodule Name

This is a description of the name that is used (e.g., in theCALL statement) to reference the module. Module names should
be descriptive of the function performed by the module.

Function

The function performed by the module should be described in
a single sentence and then with an expanded description, if
necessary. The expanded description could be a narrative
description, decision table, graphs, etc. Note that only the
module's function, not its internal logic or operation,should be described here.

&jING PAGE BLANK NOT FILMIM
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This is a precise description of all input data to the
module. This .;hould i nclu de a description of all i n ut
parameters;, their physical order, their format (e.g., size
and type (binary, decina., character)), and the range of
valid -alues.

If the module is oeher than data coupled, input descriptions
uill e more conplex.

~Outputs

This is a precise description of all output data fromt the
module. This includes, output parameters, their physical
order, format, range, and error information (e.g., return
coes) . If different classes of output may be returned, then
the output should he described in terms of "cause and effect"
relati.- ships with the input. Again, if the module is other
than data coupled, output descriptions will b o-more complex.

Often, a module's specifications are contin d at the
beginning of the module in a "module prologue", a group of
stanidardized comment statements. When this occurs, the
prologue should not indicate which modules call this module.
If the prologue of module B states that it is called by
module A and we later add a nodule C which is to call nodule
., we have to alter module B (update its prologue), which
conflicts with the goals of modularity.

Note, however, that although a module's specifications should
not reference the calling modules, a module's internal
specifications will normally describe any calls to other
modules from this module. Hence, nodule specifications
should only describe processing in that module and a ly
subordinate modules; they should make no reference to any
other module.
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APPENDIX - NOTATION

Module

- Predefined module

(e.g., pre-existing module).

A
Vodule A contains a call to
mnodule B. Module B is subordinate
to module A.

B

A Module: A transfers control (without
return) to module B.

For example, XCTL in OS.
B Not recommended.

A

C,.:nditional call. Module A sometimes
(not always) calls modulo B.

I B



A

Rcpotitivo call. Module A itcrates
throuGI clls to B ao:'d C.

B C.

A Recursive call.
Module A cali: itself.

A

NXX Module A calls module B po , sij

X, Z pararet . , Y, :d Z. X c:d Y
are inpu' to B; X and Z are output fro,.- B.

B

A

1 Samo as above.

IN OUT

78Y X,
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(e.g., oi.:raing system).

Modue A transfers control (without return)
to the operating environment

(e.g., ABEND SVC in OS).

A

Parallel activation.
IN A activates B as a pare!: -I task

(e.g., ATTACH in OS).
B

A

Module B references an cxternally
declared symbol in module A.

In addition, most combinations of these symbols are valid.

iMost of this r:otaction is due to Constantine [4].
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Seekilng to dci onstrate increased proinrammer prod(ct'ivity, a
functional org'anization of ypecialists l'd by a chief pro.1'ram-

mer has combined and applied known techniques into a niil'ed
nmethodology.

Comnbined are a program iprodurction library, genCleral-to-detail
impllemenoti'in, and struet:red " propinminf,. The overall
ImethodoloVy itH beenl applied to an iinfornuation storaLe and
retrieval system.

Experitne'ial results suggest significantly increased p)rodtctivity
and decreased systeni iite rationn difficdtieds.

by F. T. aker

Production prog;rmmling omjects today are often stafTf ,. by r~i!-
aWiveiy juliO pf .a.,wih ai s a ,few yei s o e I pei(i-"

ence. 'iis Cndi.:on is p; iimarily the rc:su t of the rapid develop-
ment of the computer and the burgeoning of its applications.
Although understandable, such staaing has at least two negative
effects on the costs of projects. First, the low average level of
experience and knowledge frequently results in less-than-opti-
mum ctficieucy in prograinrming design, coding, and testing. Con-
currently, the more expericnced programmers, who have both
the insight and knowledge needed to improve this situation, are
frequen::tly in second- or third-level maniagcment positions where
they cannot effectively or economicaily do the required detailed
work of programming.

Another kind of ineffectiveness appears on many projects,
which derives from the typical project structure wherein each
programmer has complete responsibility for all aspects of one or
a small set of modules. This means that, in addition to normal pro-
gramnmitg activities such as design, coding, and unit testing, the
programmer maintains his own decks and listings, punches his
own corrections, sets up his own runs, and writes repu!os on the
status of all aspects of his subsystem. Furthermore, since there
are few if any guidelines Olet alone standards) for doing any of
these essentially clerical tasks, the rcsults are highly individual-
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ized. Tis frecjuently leads to serious problems in subsystem in-
tegration, system testing, documentation, and inevitably to a lack
of concenlration and a general oss of effectiveness throughout
the project. Becau se. such clerical work is added to that of pro-
gramin m nloe programmers are required for a given size sys-
tem thLu would'be necessary if the programming and clerical
work were separated. There are also many more opportunities for
misur derstading \.wen there is a larger numbei of interpersonal
interface_. This approach to multiprogrammer projects appears
to have evolvced naturally, beginning in the days when one-pro-
grammer projects were the rule rather than the exception. With
the in evenig advances in methods rand technology, this is not
a necessry, desirable. or efficient way to do programming today.

H. D. MiIls has studied the present large, undiff erentiated, and chief
relativey inexperienced team approach to programming projects pronrammer

and su-g;sts that it could be supplemented- perhaps eventually teams
replacd-hy a smaller, functionally specialized, and skilled
team.' The proposed organization is compared with a surgical
team irn vhich chief programmers are analogous to chief sur-
geon-. and the chief programmer -is supported by.a team of spe-
cialists fas in a surgical team) whose members assist the chief,
rather th.n write parts of the progranv indpendeendetly.

A chief programmer is a senior level programmer who is respon-
sible for the detailed developnment of a programming system.
The chief programmer produces a critical nucl.eus of the pro-
gramming system in full, and lie speciies and intcgrates all other

p.!a-, F:ing fo r the stem as wel. If the system is sufficiently
monoithic. in function or small lenough, ie may produce it eii-
tirely.

Permantent members of a team consist of the chief programmer,
his backup programmer, and a programming librarian. The back-

up programmer is also a senior-level programmer. The librarian
may be either a programmer technician or a secretary with addi-

tional technical training. Depending on the size and character of

the sys-em under development, other programmers, analysts,
and tecinicians may be required.

The chief programmer, backup programmer, and librarian pro-
duce the central processing capabilities of the system. This pro-
gramm.cg nucleus includes job control. linkage -editing, and
some frrtion of source-language programming for the system-
includi-g the executive and, usually, the data ma'ragement sub-

systems.

Specific functional capabilities of the system may be provided

by other programmers and integrated into the system by the
chief programmer. Functional capabilities might involve very
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complex mathematical or logical considerations and require a
variety of programmers and other specialists to produce them.

Thus the team organization directly attacks the problems pre-
viously'described. By organizing the team around a skilled and
experienced programmer who performs critical parts of the
programroing.work, better performance can be expected. Also,
because of the separation of the clerical and the programming
activities, fewer programmers are needed, and the number of
interfaces- s reduced. The resuhs arc more ellicient implementa-
tion and a-more reliable product.

a team Programmning for The New York lTimes information hbank was
experimnt selected as a project'suit: le for testing the validity ofi the chief

programmner Jeam principles. Since the programming had to
interface with non-IBM programs and non-ilBM hardware. this
experiment involved most of the types of problems generally
encountered in large system development. Besides serving as
a proving ground for chief.programmer team operational tech-
niques, the project sheds light on three key questions bearing on
the utility of the approach: (I) Is the te-am a feasible organiza-
tion for production prog:amming?. (2) \Vhat are the implications
of the wide deployment of teanms?, and (3) How can a realistic
evolution be made? The main theme of this paper is a discussion
of these questions. Before beginning, however, we present a
technical descrip'tion :f the project, whi;ch was pcrformed under
a contract between Thie New York Times Company and the tmii
F'-edrat Systems Di',iion.

Information bank system

The heart of the information bank system is a conversational
subsystem that uses a data base consisting of indexing data, ab-
stracts, and full articles from The New York Times and other
periodicals. Although a primary object of' he systenm is to bring
the clipping file (morguc) to the editorial staff through terminals,
the system may also be made available to remote users. This is a
dedicated tinme-sharing sysiem that provides document retrieval
services to 64 local terminals (I BM 42791!4506 digital TV display
subsystems) and up to one hundred twenty remote lines with
display c. typewriter terminals.

Figure I is a diagram of the data flow in the conversational sub-
system, which occupies a 200 to 2401K byte partition of a Sys-
tem/360 (depending on the remote line configuration) under the
System/360 Disk Operating System (DOS/360). Most of the in-
dexing data and all of the system control data are stored on an
IBM 2314 disk storage facility. Abstracts of all articles are stored
on an IBM 2321. The full text of all articles is photographed and
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Figure I Conversational subsysem dtao flow
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placed on microfiche. and is accessible to the system through
four TV cameras containcd in a nmicrofiche retrieval device
caled fh RI'SAR th!n Vws developed by Foto-Merm. A videfo

switch :iows the digital T ' display conrsoies to receive either
compti:. - jerated c',aracter data f"u;;r the cntr' n::nit or arti-
ck: ingcs from_ the pisA~. Users have manual scan and zoom
controls to assist in studying articles antd car, alternate between
abstract and article viewing through interaction with the CPu.

Users scan the data base via a thesaurus of all descriptors (index
terms) tlhat have been uscd in indexing the articles. This thesau-
rus contains complete information about each descriptor, often
includingz scope notes and suggested cross references. Dcscrip-
tors of interest may be selected and saved for later use in com-
posing an inquiry. Experienced users, who are familiar with the
thesatrus, may key in precise descriptors directly. When the
descriptor specification is complete, inquirers supply any of the
following known bibliographic data that further limits the range
of each article in which they ate interested:

a Date or date range
* Publication in which the articles appeared
* Sources other than staff reporters from which an article has

been prepared
* Types of article (c.g., editorial or obituary)
* Articles with specific types rf illustrations (e.g., maps and

graphs)
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* Section number where an article was published
* Pages (e.g., front-page auticles)
* Colmrnns
* Relativ. importance of the article desired (on an eight-point

scale)

Users nay further specify their retrieval by combinining descrip-
tors that must appear in cligible articles by relating them in AND.
OR. and OT Boolean logic expressions.

The artic- search is perflorned in two phases. An inverted in-
dex derives an initial list of articles that satisfy the Boolean in-
quiry statement. Arficles on this list are then looked up in a tile
of bibliographiic data and further culled on the basis of any other
specilied data. When the search is complete, the inquirer may
elect to sort the article references into ascending or descending
chronological order before he begins viewing.

Because there are only four cameras available in the RIsAR, the
system limits article viewing to reduce contention. Thus the in-
quir!r views abstracts of the retrieved articles and selects the
most relevant ones for full viewing when a Cimera becomes
available. Inquirers may also request hard copies of specified
abstracts and articles. Remote users cannot view the full articles
directly. Tlie irefrences in disp.ayed abst rcts, however, identi-
fy the corresponding al tides for caf-line retrieval from other
sources or throug;., the mail.

A few other sig.;ficaut featulrVes of the CorverC'satio;al subsystem
may be of interest. It incorporates several authorization features
that inhibit unauthorized access to the system and fultill the
conditions of copyright law and other legal agreements. Inquir-
ers who need assistance may key a special code and be placed in
keyboard communication with an expert on system files and
operations. This expert may also broadcast messages of gelleral
interest to all users. Several priority categories exist to allocate
resources to inquirers and to control response time. In addition
to inquirer facilities, the conversational subsystem allows index-
ers using the digital TV terminals to compose and edit indexing
data for articles being entered into the system data base.

Figure 2 shows the relationship of the conversational subsystem
to the supporting subsystems. The indexing data previously
mentioned is processed by the data entry edit subsystem and
produces transactions for entering data into or modifying the
system files. Also produced is a separate set of transactions for
preparing a published index. The file maintenance subsystem
modifies the six interrelated files that constitute the system data
base, and also prepares file backups. Security data used by the
conversational subsystem to identify users and determine their
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Figure 2 Information bnk system
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authority is prepared by the authorization fick subsystem. The
conversational subsystem intracts withl usi'rs by presening
messages on one of three levels ranging fromi concise to tutorial,
and the message file subsystem prepares and mitns the rncs-
sage fic. During oporation of the conversatcmna subsystem,
users May request hard copy of abstracts and/or articles. The
abstracts and the microfiche addrlesses of the desianated artic"cs
are printed by the deferred print subsystem. fTb conversational
subsystem also transmits a variety of data on its operation to thc
log/statistics. file, and the corresponding subysltun. A log con-
taining a summary of operations is printcd. 0 ii data for sub-
scribers are passedM to billing programs imvitcl * y The Titnes.
Usage data are passed back to be added to tit dta base. Usage
statistics are passed to the statisties reportina. subsystem, which
produces detailed repots on overall systemn usage, descriptor
(index term) usage, abstract usage, and full article usage.
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Team organization and methodology

The methods discussed in ti-is paper have been i!ndividually tried
in other projects. .What we have done is to intirate. consis-
tently apply, hnd evaluate the following four programming man-
agement techniques that constitute the methodology of chief
programmer teams:

o Functional oreanization
* Progr'am production library
* Top-dovwn progrI:nming
* Struc'tllred programming

functional Since our-.contracts have more legal, financial, administrative.
orqanization and reporting requirements associated with them than internal

projects of corresponding size, a project manager coordinates
these activities in all except the smallest contracts. A\dministra-
tive and tech-nical problbems are jointly handled by the chief pro-
grammcer and the project manager, thereby permitting the team
and especially the chief programmer to concenitrate on the tech-
nical aspects of the project.

A functional organization also segregates the creative from the
clerical work of programming. Because the clerical work is simi-
lar in all programnning projects, sanda:ird procedures can be easi-
ly created so that a secretary performs the duties cif programn
miaintcnanice and computer scheduling.

p[;ogram We have developed a program libraiy system to isolate clerical
production work from programming and thet:eby enhance programmer pro-

library ductivity. The system currently in use is the Programming" Pro-
duction Library (PPt.), The PPL, shown in Figure 3, includes
both machine and oflfce procedures for defining tlic clerical du-
ties of a programming project. The PPL procedures promote ef-
ficiency and visibility during the program development stages.

The PPL. comprises four parts. The machine-readable internal
library is a group of sublibraries, each of which is a data set con-
taining all current project programming data. These data may be
source code, relocatable modules, linkage-editing statements,
object modules, job control statements, or test informnation. The
status of the internal library is reflected in the human-readable
evernal library binders that contain current listings of all library
members and archives consisting of recently supersded listings.
The machine procedutres consist of standard computer steps for
such procedures as the following:

o Updating libraries
* Retrieving modules for compilations and storing results
* Linkage editing of jobs and test runs
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Figure 3 Programming produclion library
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o Bac king up and restoring libraries
* Producing library status listings

QOfice prouedures are clerical rules used by librari:;ns to pr'form
the fo ilowiiig duties:

Arcc,.ing dir ctif:on marked in the externa! li;rary
* Using machine procedures
o Fi!ing updated status listings in !he external library
0 Filing and replacing pages in the archives

A programmer using the PPL works only with the external li-
brary. Using standard conventions, he enters directly into the
external library binders the changes to be made or work to be
done. He then gives these changes to the librarian. Later he re-
ceives the updated external library binders, which reflect the
new status of the internal library. The external lii rary is always
current and is organized to facilitate use by ptogramm,1rers. A
chronological history of recent runs contained in the archive
binders is retained to assist in disasecr recovery. The program-
mers are thus freed from handling dcks, filin listinfgs, key-
punchin, and spending unnecessary time in the machine area.

The PPL procedures are similar to other library maintenance
systems and consist solely of Job Control Language (JCL) state-
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Figure 4 Top-down system development
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ments and standard utility control statements. By combining
standard machine- rocedures, standard-office procedures; and
project libraries, the trained librarians provide a versatile pro-
gramming service that allows a team to make more effective use
of its time. The plI. also assists in improving productivity and
quality by providing visibility of the work, thcreby allowing
ieam members to be aware of the statu:Is of mTdIle:i t: : re
integrating. Such visibilitv also pernits mremb: i b. certain
of interfaice req~i'cments. The iater ;a worki~ ,age:; of a
team are the Code and stalements ii the i ibrares . ra her tlan a
separate set of documen;ts that !ag behind ;aclti :t:ltas. iPro-
grammers read each other's code in order to commni. icate defi-
nitions, interfaces, :and details of operation. Only when a ques-
tion arises that cannot be resolved by reading code. is it necessary
to consult another programmer directly.

top-down The third technique implemented and tested is that of top-down
programming programming. Although most programming system design is

done from the top down, most implementations are done from
the bottom up. That is, units are typically written and integrated
into subsystems that are in turn integrated at hig! r and higher
levels into the Linal system. The top-down approach inverts the
order of the development process. Figure 4 depicts the essence
of the top-down approach. Following system design. 'al JCL and
link-edit statement; are written together with a base system. The
second-level niodules are then written while the base system is
being checked out with dummy second-level rnodules and du-r;-
my files where necessary. Third-level modules are then written
while the second-level modules are being integrated with the
base system. This development cycle is repeated for as many
levels as necessary. Even within a module, the top-down ap-
proach is used by writing and running a nucleus of control code
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first. Then functional code is added to the control code in an in-
crement:al fashion.

Structured programming, also used in the information bank pro- structured
ject, is a method of programming according to a set of ruies that p:ogramrming
enhance a program's readability and maintainability. Ihe rules
are a c:ns~cquence.of a structure theorCnem in computer , cience
describCedby B6hini and Jacopini.2 The rules state that any prop-
er progran:-a program with one entry and ona exit--can be
written usig; only the folo,-wing programlming progressions that
are also illustrated in Figure 5.

A. Sequence
B. IF THEN -ELSE
C. DO WHILE

Althou2h these rules may seem restrictive and may require a Fignre 5 Structured
programmer to exercise mnore thought when first- using _them, P"ro° mm"'

several advantages ensue. With the elimination of ;o ros, one A. SEQUENCE

can read a program-frotn top to bottom with nojumps and one can --
see at a glance the conditions required for modifying a block of
code. For the same reason, tests are easier to specify. Further,
the rules assist in allowing a program unit to be written using the . IFTHENFaSE

top-down approach by writing control statements first and then
function s.tatements. The use of CA.LLs to dummy.. subrDutines or . 1
INCLUDEs of empty members permits conpliatio. and der:ing ',
at a much earlier stage of programmiw, g. Finally, if mcan.gful I
identifers are used, a prgrn:m )cco.es s.elf-docimentin and the .--- l-|i
need eor lengthy comments and flowv charts is reduced. J.

c D WHftF

Conventions to support the use of structured programming are
required. A set of rules has been developed to format source
code so that indentation corresponds to logical depth. If exten-
sive change is necessary, a program is available to reformat the
source code." To make minor changes such as moving some
code a few columns, a utility program may be written or an ex-
isting one modified. Also, the lengths of individu'al blocks of
source code are small to enhance readability and encourage a
top-down approach. The objective is to have no block exceed a
single listed page, or about fifty lines. 'Finally, by cxtending the
range of structured programming progressions, efficiency of ob-
ject code can be significantly improved, and source code read-
ability is not impaired. Thus, iterative DOs with or without a
\HIL.E clause and a simulated ALGOL-like CASE statement based
on a subscripted GO TO statement and a LABEL array were per-
mitted in our project.

Structured programming has been described in terms of lan-
guages with block structures such as PL/1, ALGOL, or JOVIAL. It
is possible to introduce a simulated block structure into other
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types of languages and then to develop strtlurinudg rules for
them also. T"his has bcen.done for System/36( Assemhtler lan-
guage, a low level language, through a set of ul;icros that intro-
ducc and -.delinit blocks and provide Do(I il.F. I. tlEN ElStE
and CASE-ltype figures. Further. if the long idenlifiers permitted
by Assenmler H are used, the source.cade is even more readable.

Sy te(c development

This s-ctnion discusses h w the previolslv d"crihe! iechnies
have been used in dev oK ing ..:. .c
was originally staffied ih -ii ,'i chief proIramrner, a c .lp pro-
grarmer-, a system analyst (who wvs also a proramn er). arid a
project manager. Since a project requirement qwas hat the infoi-
nation bank operaie :nlder the Sys~t i3,0 Di 'is ;rig Sys..
ten (DOS!360). the b.-tCup prograi.,iiei begi n dve p r a ve,-r-
sion o1' the prograniSinmi pro!du-tio librat'.'y (PP) that wouiid
operate under DOS/3,0.-Anparlel, the chief proganmmer and the
system analyst began developing a dcmiid set of iunctional
sp.ecifications. T'he first product of the team wavs a nook of speci-
fications that served as a detailed statement of the project objec-
tiVcs.

.The team, at this pnirt, reoriented i tsef frdi a an nlysis gro.ip
into a developn,:t gr-oup, and a pvrogiramnmer tchnicialt i was
added to serve a; a iibrarian. Th'e s':stem a nalyvs! ,enban dtaied
design of system exsernals. such as the ime;..;nes, comnunica--
tion log, and statistics reports. The chief p, , mer and back-
up programmer worked together on designing dh: various sub-
systems and their interfaces.

ile Since the system is heavily'ile oriented, e licient retrieval and
mal:tenance the capabiiity of ad ding large volumes of nvew material daily

suboystem were requirements. Therefore, the chief and bacuip prorain--
mers initially emphasized the development of a in cti.elaed set
of six files that provide the necessary file attr -;i. Declire-
tions of structures for these flies were the fir.t .eihs placed
in the library. Detailed file maintenance and ret riv- al gorithms
were developed before any turther design was done.

A substantial amoun t oF data aleadci existed on m.,agnetic tape.
Therefore, to begi: hbilding files for ebudtgirg eand testing the
system, it was desirable that th! file mainrten:ace ssvsl ystnm be
developed. This subsystem was designed to consist of two nmijor
programs and several minor ones. The chief p1ro in nler and
backup programmer each began work on one of the major pro-
grams. Working in top-down fiashion, control nuclei for each
riajor program were developed. Functional code ws gn adully
added to these nuclei to handle different types of file mainte-
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nance transactions until the programs were complete. The minor
programs were then produced similarly.

Because of the early need for the file maintenance programs, an
indepen;ent. *ccepance test was held for this subs;ystem. One of
the functions performed by the backup pro,rnner was the
development of a test plan that specified all functions of the sub-
system re'quiring esting and an orderly sequence for performing
the test ulsing actual data and transactions. An ind:ication of the
quality achievable by the chief prgrammer teamn is afforded by
the fact that no errors were detected duOing the su:hsotystc test.
In fact, no-errors have been detected during fi!-cn mrl.hs of
operation subsequent to the test.

While the file maintenance subsystem was being deveonped, the data entry
chief programmer and system analyst designed an o-ine sys- subsy.tem
tern for keying and correcting indexing data destined for infor-
mation bank files and for The New York Times h e.. This in-
dexing systen, became the data entry subsystenm .ad Iadditions to
the 'conversational subsystem. The Index had pr-eviously bcen
prepared by a-programming system from-data obhkied by key-
ing a complex free-form indexing language onto paper tape. Tlhe
existing language was, therefore, extended to include the fields
needed by the conversational subsystem and formalized by ex-
pressing it in Backus-Naur form. Because it was likely that the
lan u ge would he modified as the project ey'.cd,, ,ve ;decided
to perform the edtiig of indcxing data sirig synt ax-dir et rech-
niques. (Aniother prograimner w aidded to the icam ito de Vecop
t ,.,ita entry sulsystem iround the c ditvr.)

After The fie maintenance subsysten had been delivered andi the
externals of the system specified, the system analyst pro-
gramrned thdie authorization file subsystem, the message file sub-
system, the log/statistics file processing subsystem, and the de-
ferred print subsystem. (Another programmner wcas added, who
wrote the statistics reporting subsystem.)

The chief programmer and backup, programmer developed the
conversational subsystem. Again, operating in top--down fashion
first programmed was the nucleus consisting of a time-sharing
supervisor and the part of the terminal-handii;ng package re-
quired to support the digital TV terminals. This nucleus was
debugged with a simple function module that echoed back to a
display material that was typed on the keybo :.. After the nu-
cleus was operational, development of the funirctions of the re-
trieval system itself commenced. System functions were pro-
grammed in retrieval order, so that new functions could be de-
bugged and tested using existing operational functions, and an
inquiry could proceed as far as programming exi;sted to support
it. All debugging was done in the framework of the conversa-
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tionial subsystemn itself. a;nd because of the time-sharing ;aspects
of the system, several prq-ramnmerls could debug their programs
sim utanleously.. The abiit- to modify tests as results were dis-
played at a terminal was heiPful in checkilng out new code. Two
programirnet s were added to the teamn to '., rite functional code. A
third programmer was added to e: tend the tcrmiua!l-ainidling
package for the 226) and 2265 display -tcrn aials,, lland for the 2.40,

communication terminal. These prograoncmers r:apidly acquired
suficient knowledge of the interface with the time-shairing super-
visor to-write function-al code despite their s'hort participation on
the team.

sys em During this development process, the backup prograr mecr pre-
testing pared a fest pan for the rest of the system tIo e used with realis-

tic inquiries for the tet. Athough some errors were found dur-
ing a ivev-week period of junctional and performance testing, all
were e i;, tiey small, and did not involve t -he basic lic of the
system. Ms. errsors were found in the f unctional code that had
been most recently added, to the systemr and had bee the least
exercised. "The pe rforane iarts of the csting ea:-asuired both

sustained load handiin and peak load handling. In spite of the
fact that the performance tests were run on a System/360 Model
40 with three 2314 disk storage laciities as files, instead of on the

System/350) Model 50 with seven disk st;rage facilitics for
which the perfon-nc ctives been devepc rfo-
n:Ce obect c;ves were successfilly met.

Productivity

A key objective of tie chief programmreri team iiproc;: was to
demonsrate increased productivity of the team over an equal
number of conventionnih organized programmers. This section
discusses data on the pnr uctivity of the t:eam and their strategy
for using their time. Typical productivity nmeasures are computed
to fcilitat. comprarison with other pojec:ts. labie 1 baks'down
the s;taf mo ths applied on the project, and Tale 2 disp.ys mea-
sures of amounts of so!rce code produced.

Standardized definitions have been used in preparing these ta-
b!es and achieving comparable measures of productivity. Somuce
lines are eighty-cara;cter records in the liwary that have been

incorporated into the information bank and consist of the fo,llow-
ing kinds of statements:

Sf Programming lanrutage
Linkage-editor control

* Job control

Sourc.e coding has beeT Ibroken into the following three levels of
difficulty, which are summarized in Tabe 2:
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o 1 Anaoy; of projitf stllOinU b tir.e cnd cy of s r

(man1', motthsi)

Wor tylp P'roram1r
'Chief BHuchup A4ntlv t 1 2 3 4 5 Technician .anager Sec'v Tota

RcquircmenIms 2.5 1.0 8.0 0.5 - -- -- - - -- - 12.0

System dsgn 4.0 4.0 4.5 . 1.0 - - - - 13.5
Uni dcip.n,

and tesin " 12.0 14.0 10.0 13.0 4.5 2.8 3.7 4.5 - - 64.5
Doz cn,!Zio - 2.0 2.0 4.5 1.5 0.2 0.2 0.3 0.3 1 1.I
Scc re ril .' .- 7.11 7.0
Librari- - .. 5.5 -- 2.(1 7.5
Maaer 3.5 2.0 -- - - - . - - 11.0 -- 16.5
T l- 24.0 23.0 27.0 16.0 4.7 3.0 4.0 4.8 5.5 11.0 9.0

Ta",Ie 2 Lies of Source codini by d;Ts y .oty rnd t.vel

Dlifficlti High Lo.. . 1Tal

Har 5034 - 5034
Standard 44247 4513 48760
Easy 27897 1633 29530
Total 77178 6146 83324

SEasy coir: ,ts f-w interactions with olher sy;ter elements:
(Most of the support programs are in this calt'ry.)

* Standard codin,., has some interactions "wi'h otimr system
elkements. (Exarpiles air the functioa;I parts of ite con';ersa-
tional subsystem an;d the data W ntry edit subs ystm.)

o DflPicult codirng has nmany imtactiorn;s with oi.er system
ecnmcnts. (This category is limited to the control elemcnnts of
the conversational subsystemr.)

Sourcz coding types have been dccgorized as oe of the fol-
lowing:

Si ch-lec r c ,dirg a langa. such as PL/I, rCOOL, or JCL
* Low-level codiim, sruch as assembir languI::e and linka-e-

editor con;trol statnements

Tabic 3 presents some imple m:.sures of programncr produc-
tivity ,based on the same coding u:sed for producin Tables 1 and
2. The first row includes work done on unit design, coding, de-
bugging, and acceptance testing. The sccond row summarizes
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